突破具身智能任务规划边界,刷新具身大脑多榜单SOTA,中兴EmbodiedBrain模型让具身大脑学会「复杂规划」
突破具身智能任务规划边界,刷新具身大脑多榜单SOTA,中兴EmbodiedBrain模型让具身大脑学会「复杂规划」在人工通用智能(AGI)的探索征程中,具身智能 Agents 作为连接数字认知与物理世界的关键载体,其核心价值在于能够在真实物理环境中实现稳健的空间感知、高效的任务规划与自适应的执行闭环。
在人工通用智能(AGI)的探索征程中,具身智能 Agents 作为连接数字认知与物理世界的关键载体,其核心价值在于能够在真实物理环境中实现稳健的空间感知、高效的任务规划与自适应的执行闭环。
最近口述采样很火。如果您经常使用经过“对齐”训练(如RLHF)的LLM,您可能已经注意到一个现象:模型虽然变得听话、安全了,但也变得巨“无聊”。
当你阅读《红楼梦》《哈利·波特》《百年孤独》等长篇小说时,读着读着可能就忘记前面讲了什么,有时还会搞混人物关系。AI 在阅读长文章的时候也存在类似问题,当文章太长时它也会卡主,要么读得特别慢,要么记不住前面的内容。
如今 LLM 的语言理解与生成能力已展现出惊人的广泛适用性,但随着 LLM 的发展,一个事实越发凸显:仅靠语言,仍不足以支撑真正的智能。
这项工作由伊利诺伊大学香槟分校 (UIUC)、哈佛大学、哥伦比亚大学和麻省理工学院 (MIT) 的合作完成 。
如何让没有长时记忆的AI,完成持续数小时的复杂任务?Anthropic设计出一个更高效的长时智能体运行框架,让AI能够像人类工程师一样,在跨越数小时的任务中渐进式推进。
最新研究发现了一个诡异现象—— 当研究人员刻意削弱AI的「撒谎能力」后,它们反而更倾向于坦白自身的主观感受。
人需要的不是功能,而是情感连接。
在人工智能快速发展的今天,大语言模型已经深入到我们工作和生活的方方面面。然而,如何让AI生成的内容更加可信、可追溯, 一直是学术界和工业界关注的焦点问题。想象一下,当你向ChatGPT提问时,它不仅给出答案,还能像学术论文一样标注每句话的信息来源——这就是"溯源大语言模型"要解决的核心问题。
本文为Milvus Week系列第二篇,该系列旨在分享Zilliz、Milvus在系统性能、索引算法和云原生架构上的创新与实践,以下是DAY2内容划重点: Struct Array + MAX_SIM ,能够让数据库看懂 “多向量组成一个实体” 的逻辑,进而原生返回业务要的完整结果