全面增强LLM推理/规划/执行力!北航提出全新「内置CoT」思考方法
全面增强LLM推理/规划/执行力!北航提出全新「内置CoT」思考方法基于内置思维链的思考方法为解决多轮会话中存在的问题提供了研究方向。按照思考方法收集训练数据集,通过有监督学习微调大语言模型;训练一个一致性奖励模型,并将该模型用作奖励函数,以使用强化学习来微调大语言模型。结果大语言模型的推理能力和计划能力,以及执行计划的能力得到了增强。
基于内置思维链的思考方法为解决多轮会话中存在的问题提供了研究方向。按照思考方法收集训练数据集,通过有监督学习微调大语言模型;训练一个一致性奖励模型,并将该模型用作奖励函数,以使用强化学习来微调大语言模型。结果大语言模型的推理能力和计划能力,以及执行计划的能力得到了增强。
在 DeepSeek 生成的文本中,有 74.2% 的文本在风格上与 OpenAI 模型具有惊人的相似性?这是一项新研究得出的结论。这项研究来自 Copyleaks—— 一个专注于检测文本中的抄袭和 AI 生成内容的平台。
在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。
嚯,万众期待的GPT-4.5,本周就要空降发布?!部分用户的ChatGPT安卓版本(1.2025.056 测试版)上,已经出现了“GPT-4.5研究预览(GPT-4.5 research preview)”的字样。
强化学习训练数据越多,模型推理能力就越强?新研究提出LIM方法,揭示提升推理能力的关键在于优化数据质量,而不是数据规模。该方法在小模型上优势尽显。从此,强化学习Scaling Law可能要被改写了!
近日,北京航空航天大学的研究团队基于 TinyLLaVA_Factory 的原项目,推出小尺寸简易视频理解框架 TinyLLaVA-Video,其模型,代码以及训练数据全部开源。在计算资源需求显著降低的前提下,训练出的整体参数量不超过 4B 的模型在多个视频理解 benchmark 上优于现有的 7B + 模型。
2024年11月,艾伦人工智能研究所(Ai2)推出了Tülu 3 8B和70B,在性能上超越了同等参数的Llama 3.1 Instruct版本,并在长达82页的论文中公布其训练细节,训练数据、代码、测试基准一应俱全。
非营利研究机构AI2近日推出的完全开放模型OLMo 2,在同等大小模型中取得了最优性能,且该模型不止开放权重,还十分大方地公开了训练数据和方法。
1/10训练数据激发高级推理能力!近日,来自清华的研究者提出了PRIME,通过隐式奖励来进行过程强化,提高了语言模型的推理能力,超越了SFT以及蒸馏等方法。
在上一篇的评论区里,大家发生了争吵: 《DeepSeek-V3 是怎么训练的|深度拆解》 有的读者指出:DeepSeek V3 有“训练数据抄袭”的问题。