
为什么用错奖励,模型也能提分?新研究:模型学的不是新知识,是思维
为什么用错奖励,模型也能提分?新研究:模型学的不是新知识,是思维最近的一篇论文中,来自人大和腾讯的研究者们的研究表明,语言模型对强化学习中的奖励噪音具有鲁棒性,即使翻转相当一部分的奖励(例如,正确答案得 0 分,错误答案得 1 分),也不会显著影响下游任务的表现。
最近的一篇论文中,来自人大和腾讯的研究者们的研究表明,语言模型对强化学习中的奖励噪音具有鲁棒性,即使翻转相当一部分的奖励(例如,正确答案得 0 分,错误答案得 1 分),也不会显著影响下游任务的表现。
来自香港中文大学(深圳)等单位的学者们提出了一种名为 DriveGEN 的无训练自动驾驶图像可控生成方法。该方法无需额外训练生成模型,即可实现训练图像数据的可控扩充,从而以较低的计算资源成本提升三维检测模型的鲁棒性。
Qwen3强势刷新开源模型SOTA,但如何让其在资源受限场景中,既能实现低比特量化,又能保证模型“智商”不掉线?
对抗攻击,特别是基于迁移的有目标攻击,可以用于评估大型视觉语言模型(VLMs)的对抗鲁棒性,从而在部署前更全面地检查潜在的安全漏洞。然而,现有的基于迁移的对抗攻击由于需要大量迭代和复杂的方法结构,导致成本较高
近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。
机器人控制和自动驾驶的离线数据损坏问题有解了! 中科大王杰教授团队 (MIRA Lab) 提出了一种变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性。
Robin3D通过鲁棒指令数据生成引擎(RIG)生成的大规模数据进行训练,以提高模型在3D场景理解中的鲁棒性和泛化能力,在多个3D多模态学习基准测试中取得了优异的性能,超越了以往的方法,且无需针对特定任务的微调。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
视觉 / 激光雷达里程计是计算机视觉和机器人学领域中的一项基本任务,用于估计两幅连续图像或点云之间的相对位姿变换。它被广泛应用于自动驾驶、SLAM、控制导航等领域。最近,多模态里程计越来越受到关注,因为它可以利用不同模态的互补信息,并对非对称传感器退化具有很强的鲁棒性。
人工智能正经历一场由大模型引发的革命。这些拥有数十亿甚至万亿参数的庞然大物,正在重塑我们对 AI 能力的认知,也构筑起充满挑战与机遇的技术迷宫——从计算集群高速互联网络的搭建,到训练过程中模型稳定性和鲁棒性的提升,再到探索更快更优的压缩与加速方法,每一步都是对创新者的考验。