摘要
本发明属于全息相位重建领域,公开了一种基于双复值神经网络迭代的同轴全息重建方法,用于解决端到端网络训练对大量数据集的依赖及重建质量不高的问题,本发明采用基于复值神经网络的网络架构结合光学同轴全息成像模型,首先将采集得到的全息图作为输入放进复值神经网络CNet1中,得到估计相位构建复值场,反向传播后经过复值神经网络CNet2,重建相位模拟同轴全息衍射过程得到模拟的全息图;随后计算采集的全息图与模拟全息图之间的相似度,通过复值神经网络的梯度下降优化算法实现相位重建。本发明充分发挥双复值神经网络的优势实现高质量的全息相位重建。