
00后融资420万美金,用数学天才的方法解决AI最头疼的"找错信息"问题
00后融资420万美金,用数学天才的方法解决AI最头疼的"找错信息"问题你有没有发现,即使是最先进的AI系统,在面对复杂问题时仍然会给出令人沮丧的错误答案?问题往往不在于大语言模型本身,而在于它们根本找不到正确的信息。
来自主题: AI资讯
7163 点击 2025-07-17 11:08
你有没有发现,即使是最先进的AI系统,在面对复杂问题时仍然会给出令人沮丧的错误答案?问题往往不在于大语言模型本身,而在于它们根本找不到正确的信息。
智源联手多所顶尖高校发布的多模态向量模型BGE-VL,重塑了AI检索领域的游戏规则。它凭借独创的MegaPairs合成数据技术,在图文检索、组合图像检索等多项任务中,横扫各大基准刷新SOTA。
在AI技术广泛应用的企业场景中,提高检索准确度和效率已成为关键挑战。特别是面对生成式AI中的“幻觉”问题,企业急需有效解决方案。
检索增强生成 (RAG) 是将检索模型与生成模型结合起来,以提高生成内容的质量和相关性的一种有效的方法。RAG 的核心思想是利用大量文档或知识库来获取相关信息。各种工具支持 RAG,包括 Langchain 和 LlamaIndex。