ICCV 2025 | 扩散模型生成手写体文本行的首次实战,效果惊艳还开源
ICCV 2025 | 扩散模型生成手写体文本行的首次实战,效果惊艳还开源AI 会写字吗?在写字机器人衍生换代的今天,你或许并不觉得 AI 写字有多么困难。
AI 会写字吗?在写字机器人衍生换代的今天,你或许并不觉得 AI 写字有多么困难。
具身智能落地迈出关键一步,AI拥有第一人称与第三人称的“通感”了!
在今年的国际计算机视觉大会(ICCV 2025)上,来自浙江大学、香港中文大学、上海交通大学和上海人工智能实验室的研究人员联合提出了第一人称联合预测智能体 EgoAgent。
针对视觉 Transformer(ViT)因其固有 “低通滤波” 特性导致深度网络中细节信息丢失的问题,我们提出了一种即插即用、受电路理论启发的 频率动态注意力调制(FDAM)模块。它通过巧妙地 “反转” 注意力以生成高频补偿,并对特征频谱进行动态缩放,最终在几乎不增加计算成本的情况下,大幅提升了模型在分割、检测等密集预测任务上的性能,并取得了 SOTA 效果。
库克和马斯克都盯上的CV公司!打开Prompt AI官网,上面介绍了这家公司的定位:一家专注于消费应用视觉智能的AI公司。这家总部位于旧金山的初创公司,其核心团队非常UC伯克利范儿:
随着 AIGC 图像生成技术的流行,后门攻击给开源社区的繁荣带来严重威胁,然而传统分类模型的后门防御技术无法适配 AIGC 图像生成。
LeCun 这次不是批评 LLM,而是亲自改造。当前 LLM 的训练(包括预训练、微调和评估)主要依赖于在「输入空间」进行重构与生成,例如预测下一个词。 而在 CV 领域,基于「嵌入空间」的训练目标,如联合嵌入预测架构(JEPA),已被证明远优于在输入空间操作的同类方法。
还在实时视频里找特定事件找半天?最新技术直接开挂了。
就在刚刚,斯坦福大学经典 CV 课程 ——《CS231n:深度学习与计算机视觉》(2025 春季)正式上线了!课程网站:https://cs231n.stanford.edu/该系列课程深入探讨了深度学习架构的细节,并重点关注围绕图像分类、定位和检测等视觉识别任务的端到端模型学习,尤其是图像分类领域。
本文主要介绍来自该团队的最新论文:TRKT,该任务针对弱监督动态场景图任务展开研究,发现目前的性能瓶颈在场景中目标检测的质量,因为外部预训练的目标检测器在需要考虑关系信息和时序上下文的场景图视频数据上检测结果欠佳。