
到底什么是踏马的 Agentic Workflows?
到底什么是踏马的 Agentic Workflows?AI Agents,Agentic AI,Agentic Architectures,Agentic Workflows......
AI Agents,Agentic AI,Agentic Architectures,Agentic Workflows......
「70 年的 AI 研究历史告诉我们一个最重要的道理:依靠纯粹算力的通用方法,最终总能以压倒性优势胜出。」如今,似乎可以重新再聊下这个话题。比如前两天我们发的 Agent 文章里的观点:未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。
知名 AI 工程师、Pleias 的联合创始人 Alexander Doria 最近针对 DeepResearch、Agent 以及 Claude Sonnet 3.7 发表了两篇文章,颇为值得一读,尤其是 Agent 智能体的部分。
当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素点的颜色深浅,从 0 到 255。
现在各种框架满天飞,你是否想过这个问题,一个真正优秀的框架究竟需要多少代码?研究者Zach给出了一个令人惊讶的答案:仅需100行。这个名为PocketFlow的框架不仅体积小到令人难以置信(仅56KB),还能用来构建一个完整的Cursor编码助手。这个发现不仅挑战了我们对框架复杂性的认知,更揭示了一个重要的设计哲学:真正的创新往往来自于化繁为简。
Manus 爆火出圈,引发 Agent 热潮!从自行理解任务、拆解步骤到选择工具并执行,这需要 Agent 具备强大的复杂工作流编排和任务处理能力,而工作流也是智能体的核心技术之一。
在 ICLR 2025 中,来自南洋理工大学 S-Lab、上海 AI Lab、北京大学以及香港大学的研究者提出的基于 Flow Matching 技术的全新 3D 生成框架 GaussianAnything,针对现有问题引入了一种交互式的点云结构化潜空间,实现了可扩展的、高质量的 3D 生成,并支持几何-纹理解耦生成与可控编辑能力。
最近这段时间Manus 爆火,一码难求,不妨来试试这款产品,Flowith。Flowith作为新一代AI创作工作空间,以其独特的二维画布交互方式和知识花园生态系统,正在重新定义人与AI的协作方式。本文将从产品设计理念、核心功能及应用场景等维度,深入解析这款备受瞩目的AI创作工具。
播客录制和编辑平台 Podcastle ,如今也加入了 AI 文本转语音竞赛,发布了其名为 Asyncflow v1.0 的 AI 模型。同时,还将为开发者提供 API,使他们能够直接将文本转语音模型集成到自己的应用中。
昨天,两位独立开发者上演了一场现场设计大战: Brett Williams,Webflow老司机,通过他的网页设计工作室Designjoy年入100万+美元 Henrik Westerlund,19岁营销专业辍学生,来自Lovable,一款通过文本提示生成完整功能网页应用的AI产品