对话英诺王建明:机器人目前面临的核心问题是数据 | GAIR 2025
对话英诺王建明:机器人目前面临的核心问题是数据 | GAIR 2025最终能把机器人做成功的,还是机器人行业内的人。
最终能把机器人做成功的,还是机器人行业内的人。
人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。
在过去五年,AI领域一直被一条“铁律”所支配,Scaling Law(扩展定律)。它如同计算领域的摩尔定律一般,简单、粗暴、却魔力无穷:投入更多的数据、更多的参数、更多的算力,模型的性能就会线性且可预测地增长。无数的团队,无论是开源巨头还是商业实验室,都将希望孤注一掷地押在了这条唯一的救命稻草上。
机器人觉醒:控制范式退场,认知时代降临
通用人工智能的终极瓶颈不是算法、算力和数据的“三驾马车”,而在思想史。
在杭州奥体中心演唱会现场,一套名为「Co-Sight 2.0」的AI系统成功保障了网络稳定,其背后是中兴通讯研发的、新近登顶Hugging Face GAIA全球权威榜单的超级智能体。
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。
可灵正式发布了他们的 2.5 Turbo (app.klingai.com)版本视频模型,作为超创提前试了一下,这次的进步真的很大。
你或许也有过这样的猜想,如何让AI智能体(Agent)变得更聪明、更能干,同时又不用烧掉堆积如山的算力去反复微调模型?
京东云于今年 7 月正式开源了JoyAgent‑JDGenie,这是业内首个“完整产品级”通用多智能体系统——覆盖前端/后端/智能体框架/执行引擎以及众多子 Agent(如报告、代码、PPT 智能体);在权威 GAIA 基准测试中取得 75.15% 整体准确率,,显著超越 OWL、OpenManus 等同类开源产品。