
Writing-Zero: 打破 AI 写作天花板, 让 AI 写作更像"人"
Writing-Zero: 打破 AI 写作天花板, 让 AI 写作更像"人"近年来, 大语言模型 (LLM) 在数学、编程等 "有标准答案" 的任务上取得了突破性进展, 这背后离不开 "可验证奖励" (Reinforcement Learning with Verifiable Rewards, RLVR) 技术的加持。RLVR 依赖于参考信号, 即通过客观标准答案来验证模型响应的可靠性。
近年来, 大语言模型 (LLM) 在数学、编程等 "有标准答案" 的任务上取得了突破性进展, 这背后离不开 "可验证奖励" (Reinforcement Learning with Verifiable Rewards, RLVR) 技术的加持。RLVR 依赖于参考信号, 即通过客观标准答案来验证模型响应的可靠性。
近年来,大语言模型(LLM)的能力越来越强,但它们的“饭量”也越来越大。这个“饭量”主要体现在计算和内存上。当模型处理的文本越来越长时,一个叫做“自注意力(Self-Attention)”的核心机制会导致计算量呈平方级增长。这就像一个房间里的人开会,如果每个人都要和在场的其他所有人单独聊一遍,那么随着人数增加,总的对话次数会爆炸式增长。
LLM真是把审稿人害惨了!NeurIPS 2025评审结果公,全网都被「谁是Adam」爆梗淹没。更离谱的是,有人的审稿建议中,残留了AI提示的痕迹。
近年来,大型语言模型(LLMs)在复杂推理任务中展现出惊人的能力,这在很大程度上得益于过程级奖励模型(PRMs)的赋能。PRMs 作为 LLMs 进行多步推理和决策的关键「幕后功臣」,负责评估推理过程的每一步,以引导模型的学习方向。
多模态大模型 (MLLM) 驱动的 OS 智能体在单屏动作落实(如 ScreenSpot)、短链操作任务(如 AndroidControl)上展现出突出的表现,标志着端侧任务自动化的初步成熟。
当前最强大的大语言模型(LLM)虽然代码能力飞速发展,但在解决真实、复杂的机器学习工程(MLE)任务时,仍像是在进行一场“闭卷考试”。它们可以在单次尝试中生成代码,却无法模拟人类工程师那样,在反复的实验、调试、反馈和优化中寻找最优解的真实工作流。
如何理解大模型推理能力?现在有来自谷歌DeepMind推理负责人Denny Zhou的分享了。 就是那位和清华姚班马腾宇等人证明了只要思维链足够长,Transformer就能解决任何问题的Google Brain推理团队创建者。 Denny Zhou围绕大模型推理过程和方法,在斯坦福大学CS25上讲了一堂“LLM推理”课。
复合LLM应用 (compound LLM applications) 是一种结合大语言模型(LLM)与外部工具、API、或其他LLM的高效多阶段工作流应用。
近年来,语言模型的显著进展主要得益于大规模文本数据的可获得性以及自回归训练方法的有效性。
大语言模型(Large Language Model, LLM)在复杂推理任务中表现卓越。借助链式思维(Chain-of-Thought, CoT),LLM 能够将复杂问题分解为简单步骤,充分探索解题思路并得出正确答案。LLM 已在多个基准上展现出优异的推理能力,尤其是数学推理和代码生成。