Code LLM全景综述,从LLM到Agent,全文长303页,北航阿里字节等12家机构联合撰写|最新
Code LLM全景综述,从LLM到Agent,全文长303页,北航阿里字节等12家机构联合撰写|最新这篇论文由北京航空航天大学、阿里巴巴、字节跳动、上海人工智能实验室等几十家顶尖机构联合撰写,全文长达303页,是对当前“代码大模型(Code LLMs)”领域最详尽的百科全书式指南。
这篇论文由北京航空航天大学、阿里巴巴、字节跳动、上海人工智能实验室等几十家顶尖机构联合撰写,全文长达303页,是对当前“代码大模型(Code LLMs)”领域最详尽的百科全书式指南。
最近口述采样很火。如果您经常使用经过“对齐”训练(如RLHF)的LLM,您可能已经注意到一个现象:模型虽然变得听话、安全了,但也变得巨“无聊”。
如今 LLM 的语言理解与生成能力已展现出惊人的广泛适用性,但随着 LLM 的发展,一个事实越发凸显:仅靠语言,仍不足以支撑真正的智能。
大模型最广泛的应用如 ChatGPT、Deepseek、千问、豆包、Gemini 等通常会连接互联网进行检索增强生成(RAG)来产生用户问题的答案。随着多模态大模型(MLLMs)的崛起,大模型的主流技术之一 RAG 迅速向多模态发展,形成多模态检索增强生成(MM-RAG)这个新兴领域。ChatGPT、千问、豆包、Gemini 都开始允许用户提供文字、图片等多种模态的输入。
随着大语言模型(LLM)的商业价值快速提升,其昂贵的训练成本使得模型版权保护(IP Protection)成为业界关注的焦点。然而,现有模型版权验证手段(如模型指纹)往往忽略一个关键威胁:攻击者一旦直接窃取模型权重,即拥有对模型的完全控制权,能够逆向指纹 / 水印,或通过修改输出内容绕过指纹验证。
在大语言模型(LLM)的研究浪潮中,绝大多数工作都聚焦于优化模型的输出分布 —— 扩大模型规模、强化分布学习、优化奖励信号…… 然而,如何将这些输出分布真正转化为高质量的生成结果 —— 即解码(decoding)阶段,却没有得到足够的重视。
腾讯混元大模型团队正式发布并开源HunyuanOCR模型!这是一款商业级、开源且轻量(1B参数)的OCR专用视觉语言模型,模型采用原生ViT和轻量LLM结合的架构。目前,该模型在抱抱脸(Hugging Face)趋势榜排名前四,GitHub标星超过700,并在Day 0被vllm官方团队接入。
人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。
最近两周的模型竞赛非常热闹:OpenAI 在 11 月 12 日发布 GPT-5.1,引入更强的推理深度与更高效的对话体验;Google 在 11 月 18 日发布 Gemini 3,全面强化多模态理解与复杂推理能力;Anthropic 在 11 月 24 日又发布了 Claude Opus 4.5,模型在专业文档处理、代码生成与长流程 agent 方面有显著提升。
在 LLM 优化领域,有两个响亮的名字:Adam(及其变体 AdamW)和 Muon。