
用两个LLM执行PLAN-AND-ACT,让Agent在长任务中提高规划能力54% | UC伯克利最新
用两个LLM执行PLAN-AND-ACT,让Agent在长任务中提高规划能力54% | UC伯克利最新当你要求AI"帮我订一张去纽约的机票"时,它需要理解目标、分解步骤、适应变化,这个过程远比看起来复杂。UC伯克利的研究者们带来了振奋人心的新发现:通过将任务规划和执行分离的PLAN-AND-ACT框架,他们成功将智能体在长期任务中的规划能力提升了54%,创造了新的技术突破。
当你要求AI"帮我订一张去纽约的机票"时,它需要理解目标、分解步骤、适应变化,这个过程远比看起来复杂。UC伯克利的研究者们带来了振奋人心的新发现:通过将任务规划和执行分离的PLAN-AND-ACT框架,他们成功将智能体在长期任务中的规划能力提升了54%,创造了新的技术突破。
一个超越DeepSeek GRPO的关键RL算法出现了!这个算法名为DAPO,字节、清华AIR联合实验室SIA Lab出品,现已开源。禹棋赢,01年生,本科毕业于哈工大,直博进入清华AIR,目前博士三年级在读。去年年中,他以研究实习生的身份加入字节首次推出的「Top Seed人才计划」。
前脚被谷歌点名感谢空间训练平台,后脚又开源了空间模型!杭州六小龙群核科技发了一个空间理解开源模型SpatialLM,让机器人刷一段视频,就能理解物理世界的几何关系。结合之前发布的空间智能训练平台SpatialVerse,群核科技要为机器人提供从空间认知到行动交互的训练闭环。机器人也被「卷」到要上学了。
如果你让当今的 LLM 给你生成一个创意时钟设计,使用提示词「a creative time display」,它可能会给出这样的结果:
近年来,大型语言模型(LLM)通过大量计算资源在推理阶段取得了解决复杂问题的突破。推理速度已成为 LLM 架构的关键属性,市场对高效快速的 LLM 需求不断增长。
事关路由LLM(Routing LLM),一项截至目前最全面的研究,来了——
近段时间,著名 AI 科学家 Andrej Karpathy 提出的氛围编程(vibe coding)是 AI 领域的一大热门话题。简单来说,氛围编程就是鼓励开发者忘掉代码,进入开发的氛围之中。更简单地讲,就是向 LLM 提出需求,然后「全部接受」即可。
现在各种框架满天飞,你是否想过这个问题,一个真正优秀的框架究竟需要多少代码?研究者Zach给出了一个令人惊讶的答案:仅需100行。这个名为PocketFlow的框架不仅体积小到令人难以置信(仅56KB),还能用来构建一个完整的Cursor编码助手。这个发现不仅挑战了我们对框架复杂性的认知,更揭示了一个重要的设计哲学:真正的创新往往来自于化繁为简。
DeepSeek 提出的 GRPO 可以极大提升 LLM 的强化学习效率,不过其论文中似乎还缺少一些关键细节,让人难以复现出大规模和工业级的强化学习系统。
HuixiangDou 是群聊场景的 LLM 知识助手。