苹果发文质疑:大语言模型根本无法进行逻辑推理
苹果发文质疑:大语言模型根本无法进行逻辑推理5 大证据显示,LLM 在推理复杂问题时非常脆弱。
5 大证据显示,LLM 在推理复杂问题时非常脆弱。
OpenAI 最近发布的 o1 系列模型堪称迈向强人工智能的一次飞跃,其强大的推理能力为我们描绘出了下一代人工智能模型的未来图景。近日,伦敦大学学院(UCL)人工智能中心汪军教授撰写了一份「LLM 推理教程」,深入详细地介绍了 OpenAI ο1 模型背后的相关方法。
本文是一篇发表在 NeurIPS 2024 上的论文,单位是香港大学、Sea AI Lab、Contextual AI 和俄亥俄州立大学。论文主要探讨了大型语言模型(LLMs)的词表大小对模型性能的影响。
RAG(Retrieval-Augmented Generation)是一种结合信息检索与文本生成的技术,旨在提高大型语言模型(LLM)在回答复杂查询时的表现。它通过检索相关的上下文信息来增强生成答案的质量和准确性。解读RAG测评:关键指标与应用分析
该研究主要探讨了大语言模型的全局剪枝方法,旨在提高预训练语言模型的效率。该成果的发表为大模型的剪枝与优化研究提供了新的视角,并在相关领域具有重要的应用潜力。
随着大规模语言模型的快速发展,如 GPT、Claude 等,LLM 通过预训练海量的文本数据展现了惊人的语言生成能力。然而,即便如此,LLM 仍然存在生成不当或偏离预期的结果。这种现象在推理过程中尤为突出,常常导致不准确、不符合语境或不合伦理的回答。为了解决这一问题,学术界和工业界提出了一系列对齐(Alignment)技术,旨在优化模型的输出,使其更加符合人类的价值观和期望。
Transformer 的强大实力已经在诸多大型语言模型(LLM)上得到了证明,但该架构远非完美,也有很多研究者致力于改进这一架构,比如机器之心曾报道过的 Reformer 和 Infini-Transformer。
众所周知,人类的本质是复读机。 我们遵循复读机的自我修养:敲黑板,划重点,重要的事情说三遍。 but,事实上同样的方法对付AI也有奇效!
Transformer计算,竟然直接优化到乘法运算了。MIT两位华人学者近期发表的一篇论文提出:Addition is All You Need,让LLM的能耗最高降低95%。
Mila、谷歌DeepMind和微软的研究团队近期联合发布了一项重要研究成果,揭示了LLM在推理能力上存在的显著差异。这项研究不仅挑战了我们对LLM推理能力的认知,也提醒我们在开发AI应用时,LLM的选择上要多考虑一些因素,尤其是需要注意Prompt的敏感性和一致性。