Jina-VLM:可在笔记本上跑的多语言视觉小模型
Jina-VLM:可在笔记本上跑的多语言视觉小模型今天我们正式发布 Jina-VLM,这是一款 2.4B 参数量的视觉语言模型(VLM),在同等规模下达到了多语言视觉问答(Multilingual VQA)任务上的 SOTA 基准。Jina-VLM 对硬件需求较低,可在普通消费级显卡或 Macbook 上流畅运行。
今天我们正式发布 Jina-VLM,这是一款 2.4B 参数量的视觉语言模型(VLM),在同等规模下达到了多语言视觉问答(Multilingual VQA)任务上的 SOTA 基准。Jina-VLM 对硬件需求较低,可在普通消费级显卡或 Macbook 上流畅运行。
来自中国的初创团队词元无限给出了自己的答案。由清华姚班校友带队设计开发的编码智能体 InfCode,在 SWE-Bench Verified 和 Multi-SWE-bench-CPP 两项非常权威的 AI Coding 基准中双双登顶,力压一众编程智能体。
毫无疑问,Google最新推出的Gemini 3再次搅动了硅谷的AI格局。在OpenAI与Anthropic激战正酣之时,谷歌凭借其深厚的基建底蕴与全模态(Native Multimodal)路线,如今已从“追赶者”变成了“领跑者”。
长期以来,多模态代码生成(Multimodal Code Generation)的训练严重依赖于特定任务的监督微调(SFT)。尽管这种范式在 Chart-to-code 等单一任务上取得了显著成功 ,但其 “狭隘的训练范围” 从根本上限制了模型的泛化能力,阻碍了通用视觉代码智能(Generalized VIsioN Code Intelligence)的发展 。
今天,北京智源人工智能研究院(BAAI)重磅发布了其多模态系列模型的最新力作 —— 悟界・Emu3.5。这不仅仅是一次常规的模型迭代,Emu3.5 被定义为一个 “多模态世界大模型”(Multimodal World Foudation Model)。
大语言模型(LLM)虽已展现出卓越的代码生成潜力,却依然面临着一道艰巨的挑战:如何在有限的计算资源约束下,同步提升对多种编程语言的理解与生成能力,同时不损害其在主流语言上的性能?
彭超曾在华为印度、阿里任消费硬件业务1号位;联合创始人齐炜祯为Multi-token架构开创学者,被Deepseek、Qwen引入预训练方法。
近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。
Prezent 是一家为企业提供人工智能演示文稿制作工具的初创公司,今日宣布完成 3000 万美元融资。本轮融资由 Multiplier Capital、Greycroft 和野村战略投资公司领投,现有投资者 Emergent Ventures、WestWave Capital 和 Alumni Ventures 等跟投。
智能体开发平台3.0(ADP3.0)面向全球上线,腾讯优图实验室的关键智能体技术也将持续开源。据说,这次新版本打磨了3个月,完成近600个功能上线,从RAG能力到Workflow,从Multi-Agent协同到应用评测,再到插件生态,看样子是把所有模块都更新了一遍。