
NeurIPS 2024 | 水印与高效推理如何两全其美?最新理论:这做不到
NeurIPS 2024 | 水印与高效推理如何两全其美?最新理论:这做不到近日,DeepMind 团队将水印技术和投机采样(speculative sampling)结合,在为大语言模型加入水印的同时,提升其推理效率,降低推理成本,因此适合用于大规模生产环境。
近日,DeepMind 团队将水印技术和投机采样(speculative sampling)结合,在为大语言模型加入水印的同时,提升其推理效率,降低推理成本,因此适合用于大规模生产环境。
谁是在线购物领域最强大模型?也有评测基准了。
顶不住了,真的顶不住。 AI顶会NeurIPS公布了今年「高中组」论文的获奖结果。
近年来,AI for Science 发展提速,不仅为科研领域带来创新研究思路,同时也拓宽了 AI 的落地通路,为其提供了更多具有挑战性的应用场景。在这个过程中,越来越多的 AI 领域研究人员开始关注医疗、材料、生物等传统科研领域,探索其中的研究难点与行业挑战。
自我纠错(Self Correction)能力,传统上被视为人类特有的特征,正越来越多地在人工智能领域,尤其是大型语言模型(LLMs)中得到广泛应用,最近爆火的OpenAI o1模型[1]和Reflection 70B模型[2]都采取了自我纠正的方法。
卡内基梅隆大学提出了视频生成模型加速方法Run-Length Tokenization(RLT),被NeurIPS 2024选为Spotlight论文。 在精度几乎没有损失的前提下,RLT可以让模型训练和推理速度双双提升。
本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。
近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。
利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
这篇文章获选 Neurips 2024 Spotlight,作者均来自于伊利诺伊大学香槟分校计算机系。第一作者是博士生林啸,指导老师是童行行教授。所在的 IDEA 实验室的研究兴趣涵盖图机器学习、可信机器学习、LLM 优化以及数据挖掘等方面。