
视频推理R1时刻,7B模型反超GPT-4o!港中文清华推出首个Video-R1
视频推理R1时刻,7B模型反超GPT-4o!港中文清华推出首个Video-R1港中文和清华团队推出Video-R1模型,首次将强化学习的R1范式应用于视频推理领域。通过升级的T-GRPO算法和混合图像视频数据集,Video-R1在视频空间推理测试中超越了GPT-4o,展现了强大的推理能力,并且全部代码和数据集均已开源。
港中文和清华团队推出Video-R1模型,首次将强化学习的R1范式应用于视频推理领域。通过升级的T-GRPO算法和混合图像视频数据集,Video-R1在视频空间推理测试中超越了GPT-4o,展现了强大的推理能力,并且全部代码和数据集均已开源。
密集模型的推理能力也能和DeepSeek-R1掰手腕了?
随着 OpenAI o1 和 DeepSeek R1 的爆火,大语言模型(LLM)的推理能力增强和测试时扩展(TTS)受到广泛关注。然而,在复杂推理问题中,如何精准评估模型每一步回答的质量,仍然是一个亟待解决的难题。传统的过程奖励模型(PRM)虽能验证推理步骤,但受限于标量评分机制,难以捕捉深层逻辑错误,且其判别式建模方式限制了测试时的拓展能力。
研究发现,推理模型(如DeepSeek-R1、o1)遇到「缺失前提」(MiP)的问题时,这些模型往往表现失常:回答长度激增、计算资源浪费。本文基于马里兰大学和利哈伊大学的最新研究,深入剖析推理模型在MiP问题上的「过度思考」现象,揭示其背后的行为模式,带你一窥当前AI推理能力的真实边界。
近年来,随着大型语言模型(LLMs)的快速发展,多模态理解领域取得了前所未有的进步。像 OpenAI、InternVL 和 Qwen-VL 系列这样的最先进的视觉-语言模型(VLMs),在处理复杂的视觉-文本任务时展现了卓越的能力。
AIMO2最终结果出炉了!英伟达团队NemoSkills拔得头筹,凭借14B小模型破解了34道奥数题,完胜DeepSeek R1。
千亿参数内最强推理大模型,刚刚易主了。32B——DeepSeek-R1的1/20参数量;免费商用;且全面开源——模型权重、训练数据集和完整训练代码,都开源了。这就是刚刚亮相的Skywork-OR1 (Open Reasoner 1)系列模型——
Qwen 3还未发布,但已发布的Qwen系列含金量还在上升。2个月前,李飞飞团队基于Qwen2.5-32B-Instruct 模型,以不到50美元的成本训练出新模型 S1-32B,取得了与 OpenAI 的 o1 和 DeepSeek 的 R1 等尖端推理模型数学及编码能力相当的效果。如今,他们的视线再次投向了这个国产模型。
字节跳动豆包团队今天发布了自家新推理模型 Seed-Thinking-v1.5 的技术报告。从报告中可以看到,这是一个拥有 200B 总参数的 MoE 模型,每次工作时会激活其中 20B 参数。其表现非常惊艳,在各个领域的基准上都超过了拥有 671B 总参数的 DeepSeek-R1。有人猜测,这就是字节豆包目前正在使用的深度思考模型。
OpenAI o1/o3-mini级别的代码推理模型竟被抢先开源!UC伯克利和Together AI联合推出的DeepCoder-14B-Preview,仅14B参数就能媲美o3-mini,开源代码、数据集一应俱全,免费使用。