NeurIPS 2025 | Language Ranker:从推荐系统的视角反思并优化大模型解码过程
NeurIPS 2025 | Language Ranker:从推荐系统的视角反思并优化大模型解码过程在大语言模型(LLM)的研究浪潮中,绝大多数工作都聚焦于优化模型的输出分布 —— 扩大模型规模、强化分布学习、优化奖励信号…… 然而,如何将这些输出分布真正转化为高质量的生成结果 —— 即解码(decoding)阶段,却没有得到足够的重视。
在大语言模型(LLM)的研究浪潮中,绝大多数工作都聚焦于优化模型的输出分布 —— 扩大模型规模、强化分布学习、优化奖励信号…… 然而,如何将这些输出分布真正转化为高质量的生成结果 —— 即解码(decoding)阶段,却没有得到足够的重视。
大模型推理的爆发,实际源于 scaling 范式的转变:从 train-time scaling 到 test-time scaling(TTS),即将更多的算力消耗部署在 inference 阶段。典型的实现是以 DeepSeek r1 为代表的 long CoT 方法:通过增加思维链的长度来获得答案精度的提升。那么 long CoT 是 TTS 的唯一实现吗?
李飞飞等顶尖学者投身的创业方向——世界模型是 AI 的下一站吗? 「AI 是人类自诞生以来,唯一担得起『日新月异』这个词的技术领域,」在机器之心近日举办的 NeurIPS 2025 论文分享会圆桌讨论上,茶思屋科技网站总编张群英的开场感叹引发了在场专家们的共鸣。
REG 是一种简单而有效的方法,仅通过引入一个 class token 便能大幅加速生成模型的训练收敛。其将基础视觉模型(如 DINOv2)的 class token 与 latent 在空间维度拼接后共同加噪训练,从而显著提升 Diffusion 的收敛速度与性能上限。在 ImageNet 256×256 上,
今天,NeurIPS 2025最佳论文出炉!4篇最佳论文,华人占多半,何恺明孙剑等人曾提出的Faster R-CNN获「时间检验奖」,实至名归。
刚刚,NeurIPS 2025最佳论文奖、时间检验奖出炉!
脉冲神经网络(SNN)不用再纠结二进制短板了。
当前,视频生成模型性能正在快速提升,尤其是基于Transformer架构的DiT模型,在视频生成领域的表现已经逐渐接近真实拍摄效果。然而,这些扩散模型也面临一个共同的瓶颈:推理时间长、算力成本高、生成速度难以提升。随着视频生成长度持续增加、分辨率不断提高,这个瓶颈正在成为影响视频创作体验的主要障碍之一。
图像与视频重光照(Relighting)技术在计算机视觉与图形学中备受关注,尤其在电影、游戏及增强现实等领域应用广泛。当前,基于扩散模型的方法能够生成多样且可控的光照效果,但其优化过程通常依赖于语义空间,而语义上的相似性无法保证视觉空间中的物理合理性,导致生成结果常出现高光过曝、阴影错位、遮挡关系错误等不合理现象。
近日,微软CEO纳德拉与Stripe联合创始人约翰·科里森(John Collison)进行了一场关于AI技术、商业本质与组织进化的深度对话。