硅谷豪赌算力烧到停电,中国团队反向出击!这一刀,直接砍碎Scaling Law
硅谷豪赌算力烧到停电,中国团队反向出击!这一刀,直接砍碎Scaling Law思考token在精不在多。Yuan 3.0 Flash用RAPO+RIRM双杀过度思考,推理token砍75%,网友们惊呼:这就是下一代AI模型的发展方向!
思考token在精不在多。Yuan 3.0 Flash用RAPO+RIRM双杀过度思考,推理token砍75%,网友们惊呼:这就是下一代AI模型的发展方向!
机器人领域是我们长期关注的赛道,而 Generalist 是当前机器人领域中极少数具备长期竞争潜力的公司,核心优势集中在数据规模、团队能力与清晰的 scaling 路径上。
大语言模型的爆发,让大家见证了 Scaling Law 的威力:只要数据够多、算力够猛,智能似乎就会自动涌现。但在机器人领域,这个公式似乎失效了。
2026 年危机逼近,OpenAI 虽创下 400 亿美元融资纪录,但内部预测 2028 年亏损将扩大至 450 亿美元。不同于有传统业务「输血」的科技巨头,独立 AI 公司受困于 Scaling Laws 带来的指数级成本爆炸。奥特曼的万亿豪赌或难以为继,OpenAI 恐面临被吞并结局,AI 泡沫时代即将硬着陆。
2024 年底,硅谷和北京的茶水间里都在讨论同一个令人不安的话题:Scaling Law 似乎正在撞墙。
在 Anthropic 成立五周年前夕,联合创始人兼总裁 Daniela Amodei 罕见接受了公开采访!
2026年,Scaling Law是否还能继续玩下去?对于这个问题,一篇来自DeepMind华人研究员的万字长文在社交网络火了:Scaling Law没死!算力依然就是正义,AGI才刚刚上路。
过去10年,AI大模型的技术本质,是把电力能源通过计算过程转化为可复用的智能。2026年,我们需要让AI模型在单位时间内「吃下」更多能源,并真正将其转化为智能。
最近,清华大学教授、智谱AI首席科学家唐杰发了一条长微博,总结了自己2025年对大模型进展的感悟。从预训练到中后训练、长尾场景的对齐能力,再到Agent、多模态和具身智能的发展,其中有不少亮点。
「高烧」三年后,AI行业终于冷静:Scaling红利即将耗尽,单纯堆参数绝非良药。但商汤已胸有成竹。