Stable-DiffCoder超越自回归模型!扩散模型在代码生成取得新突破
Stable-DiffCoder超越自回归模型!扩散模型在代码生成取得新突破扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
来自主题: AI技术研报
9899 点击 2026-02-06 10:37
扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
北京大学等研究团队优化了Sdcpp框架,通过引入Winograd算法和多项策略,显著提升了图像生成速度和内存效率,最高可提速4.79倍。