AI资讯新闻榜单内容搜索-Transforme

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Transforme
清华联手千问重塑归一化范式,让 Transformer 回归「深度」学习

清华联手千问重塑归一化范式,让 Transformer 回归「深度」学习

清华联手千问重塑归一化范式,让 Transformer 回归「深度」学习

在十九世纪的暹罗王国曾诞生过这样一对连体兄弟:他们分别拥有完整的四肢和独立的大脑,但他们六十余年的人生被腰部相连着的一段不到十厘米的组织带永远绑定在了一起。他们的连体曾带来无尽的束缚,直到他们离开暹罗,走上马戏团的舞台。十年间,两兄弟以近乎合二为一的默契巡演欧美,获得巨大成功。

来自主题: AI技术研报
5157 点击    2026-02-11 13:59
速递|从LLM到LTM:Fundamental以“数据基础模型”切入,A轮融资2.55亿美元

速递|从LLM到LTM:Fundamental以“数据基础模型”切入,A轮融资2.55亿美元

速递|从LLM到LTM:Fundamental以“数据基础模型”切入,A轮融资2.55亿美元

大规模表格模型(LTM)而非大规模语言模型(LLM)的 Fundamental 公司 Nexus 模型,在多个重要方面突破了当代人工智能实践。该模型具有确定性——即每次被询问相同问题时都会给出相同答案——且不依赖定义当代大多数人工智能实验室模型的 Transformer 架构 。

来自主题: AI资讯
9048 点击    2026-02-09 11:22
具身大模型LaST₀:双臂/移动/灵巧手全面新SOTA,首次引入隐空间时空思维链

具身大模型LaST₀:双臂/移动/灵巧手全面新SOTA,首次引入隐空间时空思维链

具身大模型LaST₀:双臂/移动/灵巧手全面新SOTA,首次引入隐空间时空思维链

LaST₀团队 投稿 量子位 | 公众号 QbitAI 近日,至简动力、北京大学、香港中文大学、北京人形机器人创新中心提出了一种名为LaST₀的全新隐空间推理VLA模型,在基于Transformer混

来自主题: AI技术研报
5663 点击    2026-02-08 11:50
大模型哪里出问题、怎么修,这篇可解释性综述一次讲清

大模型哪里出问题、怎么修,这篇可解释性综述一次讲清

大模型哪里出问题、怎么修,这篇可解释性综述一次讲清

过去几年,机制可解释性(Mechanistic Interpretability)让研究者得以在 Transformer 这一 “黑盒” 里追踪信息如何流动、表征如何形成:从单个神经元到注意力头,再到跨层电路。但在很多场景里,研究者真正关心的不只是 “模型为什么这么答”,还包括 “能不能更稳、更准、更省,更安全”。

来自主题: AI技术研报
9984 点击    2026-01-28 10:13
LeCun、谢赛宁团队重磅论文:RAE能大规模文生图了,且比VAE更好

LeCun、谢赛宁团队重磅论文:RAE能大规模文生图了,且比VAE更好

LeCun、谢赛宁团队重磅论文:RAE能大规模文生图了,且比VAE更好

编辑|Panda 在文生图模型的技术版图中,VAE 几乎已经成为共识。从 Stable Diffusion 到 FLUX,再到一系列扩散 Transformer,主流路线高度一致:先用 VAE 压缩视

来自主题: AI技术研报
6687 点击    2026-01-24 10:52
清华姚班校友刘壮团队再发力,无需归一化的Transformer性能进化

清华姚班校友刘壮团队再发力,无需归一化的Transformer性能进化

清华姚班校友刘壮团队再发力,无需归一化的Transformer性能进化

这篇新论文提出了一种非常简单的新激活层 Derf(Dynamic erf),让「无归一化(Normalization-Free)」的 Transformer 不仅能稳定训练,还在多个设置下性能超过了带 LayerNorm 的标准 Transformer。

来自主题: AI技术研报
7501 点击    2026-01-24 10:38
非Transformer架构的新突破,Liquid AI开源LFM2.5-1.2B-Thinking模型

非Transformer架构的新突破,Liquid AI开源LFM2.5-1.2B-Thinking模型

非Transformer架构的新突破,Liquid AI开源LFM2.5-1.2B-Thinking模型

就在刚刚,Liquid AI 又一次在 LFM 模型上放大招。他们正式发布并开源了 LFM2.5-1.2B-Thinking,一款可完全在端侧运行的推理模型。Liquid AI 声称,该模型专门为简洁推理而训练;在生成最终答案前,会先生成内部思考轨迹;在端侧级别的低延迟条件下,实现系统化的问题求解;在工具使用、数学推理和指令遵循方面表现尤为出色。

来自主题: AI资讯
10233 点击    2026-01-22 11:59
马斯克刚刚真把 𝕏 平台推荐算法给开源了,核心也是Transformer

马斯克刚刚真把 𝕏 平台推荐算法给开源了,核心也是Transformer

马斯克刚刚真把 𝕏 平台推荐算法给开源了,核心也是Transformer

刚刚,𝕏 平台(原 Twitter 平台)公布了全新的开源消息:已将全新的推荐算法开源,该算法由与 xAI 的 Grok 模型相同的 Transformer 架构驱动。

来自主题: AI技术研报
10116 点击    2026-01-21 10:40
Sebastian Raschka 2026预测:Transformer统治依旧,但扩散模型正悄然崛起

Sebastian Raschka 2026预测:Transformer统治依旧,但扩散模型正悄然崛起

Sebastian Raschka 2026预测:Transformer统治依旧,但扩散模型正悄然崛起

站在 2026 年的开端回望,LLM 的架构之争似乎进入了一个新的微妙阶段。过去几年,Transformer 架构以绝对的统治力横扫了人工智能领域,但随着算力成本的博弈和对推理效率的极致追求,挑战者们从未停止过脚步。

来自主题: AI技术研报
9153 点击    2026-01-14 15:25