
Transformer²要做「活」的AI模型,动态调整权重,像章鱼一样适应环境
Transformer²要做「活」的AI模型,动态调整权重,像章鱼一样适应环境自适应 LLM 反映了神经科学和计算生物学中一个公认的原理,即大脑根据当前任务激活特定区域,并动态重组其功能网络以响应不断变化的任务需求。
自适应 LLM 反映了神经科学和计算生物学中一个公认的原理,即大脑根据当前任务激活特定区域,并动态重组其功能网络以响应不断变化的任务需求。
「2025 年,我们可能会看到第一批 AI Agent 加入劳动力大军,并对公司的生产力产生实质性的影响。」——OpenAI CEO Sam Altman
想挑战 Transformer 的新架构有很多,来自谷歌的“正统”继承者 Titan 架构更受关注。
随着图像编辑工具和图像生成技术的快速发展,图像处理变得非常方便。然而图像在经过处理后不可避免的会留下伪影(操作痕迹),这些伪影可分为语义和非语义特征。
要做大模型领域的安卓和Linux。
时间序列数据,作为连续时间点的数据集合,广泛存在于医疗、金融、气象、交通、能源(电力、光伏等)等多个领域。有效的时间序列预测模型能够帮助我们理解数据的动态变化,预测未来趋势,从而做出更加精准的决策。
2022年,我们打赌说transformer会统治世界。 我们花了两年时间打造Sohu,这是世界上第一个用于transformer(ChatGPT中的“T”)的专用芯片。
ViT核心作者Lucas Beyer,长文分析了一篇改进Transformer架构的论文,引起推荐围观。
Transformer——支撑像 OpenAI 的 ChatGPT 和 Anthropic 的 Claude 这样的聊天机器人的基础 AI 技术——正在帮助机器人更快地学习。
研究人员对基于Transformer的Re-ID研究进行了全面回顾和深入分析,将现有工作分类为图像/视频Re-ID、数据/标注受限的Re-ID、跨模态Re-ID以及特殊Re-ID场景,提出了Transformer基线UntransReID,设计动物Re-ID的标准化基准测试,为未来Re-ID研究提供新手册。