向量数据库新范式:分层存储,让数据从全量加载到按需加载 | Milvus Week
向量数据库新范式:分层存储,让数据从全量加载到按需加载 | Milvus Week本文为Milvus Week系列第7篇,该系列旨在把Zilliz团队过去半年多积累的先进的技术实践和创新整理成多篇干货深度文章发布。
本文为Milvus Week系列第7篇,该系列旨在把Zilliz团队过去半年多积累的先进的技术实践和创新整理成多篇干货深度文章发布。
本文为Milvus Week系列第6篇,该系列旨在把Zilliz团队过去半年多积累的先进的技术实践和创新整理成多篇干货深度文章发布。
本文为Milvus Week系列第5篇,该系列旨在把Zilliz团队过去半年多积累的先进的技术实践和创新整理成多篇干货深度文章发布。
本文为Milvus Week系列第三篇,该系列旨在分享Milvus的创新与实践成果,以下是DAY3内容划重点: Milvus2.6中,Zilliz借助Geolocation Index for Milvus,首次将地理空间数据与向量检索融合,使 AI 可以在理解语义的同时,理解空间。
本文为Milvus Week系列第二篇,该系列旨在分享Zilliz、Milvus在系统性能、索引算法和云原生架构上的创新与实践,以下是DAY2内容划重点: Struct Array + MAX_SIM ,能够让数据库看懂 “多向量组成一个实体” 的逻辑,进而原生返回业务要的完整结果
本文为Milvus Week系列第一篇,该系列旨在分享Zilliz、Milvus在系统性能、索引算法和云原生架构上的创新与实践,以下是DAY1内容划重点:
在 AI 圈,如果你关注基础设施、尤其是向量数据库,那你大概率听说过 Zilliz。2023 年,黄仁勋在 GTC 大会上的一次点名推荐,让这家公司进入大众视野。但真正吸引我注意的,是 Zilliz 创始人星爵年初的一篇访谈文章,标题叫做:《我们没有对手》 ——在商界如此直白地表达自信非常罕见,这让我确信他对自己做的事有极强的信念和实际领先优势。
技术上,从传统的关键词检索,到RAG,大家已经不满足于只是生成对应的简单回答。而是期待大语言模型能够更好地应用于企业级场景,产生更大的价值。不久前,OpenAI推出了最新的深度内容生成神器“DeepResearch”,用户只需一个"特斯拉的合理市值是多少"的提问,
命运齿轮转动的开始,源于 2023 年的 3 月 23 日的 OpenAI 一次日常更新。
关于长文本和 RAG 到底如何选择,一直有争论,从基模公司到应用开发者。 今天这篇文章,是来自基模公司月之暗面和中间层 Zilliz 的技术对话,值得一看。