
英伟达联手MIT清北发布SANA 1.5!线性扩散Transformer再刷文生图新SOTA
英伟达联手MIT清北发布SANA 1.5!线性扩散Transformer再刷文生图新SOTASANA 1.5是一种高效可扩展的线性扩散Transformer,针对文本生成图像任务进行了三项创新:高效的模型增长策略、深度剪枝和推理时扩展策略。这些创新不仅大幅降低了训练和推理成本,还在生成质量上达到了最先进的水平。
SANA 1.5是一种高效可扩展的线性扩散Transformer,针对文本生成图像任务进行了三项创新:高效的模型增长策略、深度剪枝和推理时扩展策略。这些创新不仅大幅降低了训练和推理成本,还在生成质量上达到了最先进的水平。
新一代 Kaldi 团队是由 Kaldi 之父、IEEE fellow、小米集团首席语音科学家 Daniel Povey 领衔的团队,专注于开源语音基础引擎研发,从神经网络声学编码器、损失函数、优化器和解码器等各方面重构语音技术链路,旨在提高智能语音任务的准确率和效率。
降低扩散模型生成的计算成本,性能还保持在高水平! 最新研究提出一种用于极低位差分量化的混合精度量化方法。
将扩散模型量化到1比特极限,又有新SOTA了! 来自北航、ETH等机构的研究人员提出了一种名为BiDM的新方法,首次将扩散模型(DMs)的权重和激活完全二值化。
小模型也能击败o1?微软全华人团队提出rStar-Math算法,三大革命性技术突破,不仅让SLM在数学推理能力上刷新SOTA,更是挤进了全美20%顶尖高中生榜单。
1/10训练数据激发高级推理能力!近日,来自清华的研究者提出了PRIME,通过隐式奖励来进行过程强化,提高了语言模型的推理能力,超越了SFT以及蒸馏等方法。
Argil采用SOTA deepfake模型的AI数字人技术,专为当今以视频为中心的环境而量身定制,旨在推广视频创作大众化,可满足创作者满足不断提高的质量标准的需求,而无需传统的时间和成本障碍。
自回归文生图,迎来新王者——
我们实测16个Prompt:生成速度比Sora还快,动漫效果行业SOTA。
Sora、Genie等模型会都用到的Tokenizer,微软下手了—— 开源了一套全能的Video Tokenizer,名为VidTok。