AI跌价900倍,连一瓶矿泉水都比它贵!
AI跌价900倍,连一瓶矿泉水都比它贵!过去一年,AI模型的价格暴跌百倍!同样一句话,去年要10块,现在只要几分钱。可与此同时,家政、育儿、心理咨询、维修.....这些「手工活」越来越贵。科技正在疯狂通缩,生活却越来越通胀。这不是经济学笑话,而是Jevons与Baumol共同制造的现实:当机器更聪明,人工就更昂贵。
过去一年,AI模型的价格暴跌百倍!同样一句话,去年要10块,现在只要几分钱。可与此同时,家政、育儿、心理咨询、维修.....这些「手工活」越来越贵。科技正在疯狂通缩,生活却越来越通胀。这不是经济学笑话,而是Jevons与Baumol共同制造的现实:当机器更聪明,人工就更昂贵。
大模型推理到底要不要「长篇大论」?过去一年,OpenAI o 系列、DeepSeek-R1、Qwen 等一系列推理模型,把「长链思维」玩到极致:答案更准了,但代价是推理链越来越长、Token 消耗爆炸、响应速度骤降。
AEPO 系统性揭示了「高熵 Rollout 采样坍缩」和「高熵梯度裁剪」问题,并设计了「动态熵平衡 Rollout 采样」与「熵平衡策略优化」两项核心机制。前者通过熵预监控与连续分支惩罚实现全局与局部探索预算的自适应分配,后者在策略更新阶段引入梯度停止与熵感知优势估计以保留高熵 token 的探索梯度。
Game-TARS基于统一、可扩展的键盘—鼠标动作空间训练,可在操作系统、网页与模拟环境中进行大规模预训练。依托超5000亿标注量级的多模态训练数据,结合稀疏推理(Sparse-Thinking) 与衰减持续损失(decaying continual loss),大幅提升了智能体的可扩展性和泛化性。
在NeurIPS 2025论文中,来自「南京理工大学、中南大学、南京林业大学」的研究团队提出了一个极具突破性的框架——VIST(Vision-centric Token Compression in LLM),为大语言模型的长文本高效推理提供了全新的「视觉解决方案」。值得注意的是,这一思路与近期引起广泛关注的DeepSeek-OCR的核心理念不谋而合。
在多模态生成领域,由视频生成音频(Video-to-Audio,V2A)的任务要求模型理解视频语义,还要在时间维度上精准对齐声音与动态。早期的 V2A 方法采用自回归(Auto-Regressive)的方式将视频特征作为前缀来逐个生成音频 token,或者以掩码预测(Mask-Prediction)的方式并行地预测音频 token,逐步生成完整音频。
按从左到右的顺序依次生成下一个 token 真的是大模型生成方式的最优解吗?最近,越来越多的研究者对此提出质疑。其中,有些研究者已经转向一个新的方向 —— 掩码扩散语言模型(MDLM)。
最新进展,Cursor 2.0正式发布,并且首次搭载了「内部」大模型。 没错,不是GPT、不是Claude,如今模型栏多了个新名字——Composer。实力相当炸裂:据官方说法,Composer仅需30秒就能完成复杂任务,比同行快400%
彭超曾在华为印度、阿里任消费硬件业务1号位;联合创始人齐炜祯为Multi-token架构开创学者,被Deepseek、Qwen引入预训练方法。
自回归(AR)大语言模型逐 token 顺序解码的范式限制了推理效率;扩散 LLM(dLLM)以并行生成见长,但过去难以稳定跑赢自回归(AR)模型,尤其是在 KV Cache 复用、和 可变长度 支持上仍存挑战。