
手机流畅处理128K长文本,vivo端侧新算法突破内存限制 | ACL 2025
手机流畅处理128K长文本,vivo端侧新算法突破内存限制 | ACL 2025在端侧设备上处理长文本常常面临计算和内存瓶颈。
在端侧设备上处理长文本常常面临计算和内存瓶颈。
英伟达官宣新办公室落户中国台湾省台北市,但居然是从太空飞下来的吗?
DeepSeek最新论文深入剖析了V3/R1的开发历程,揭示了硬件与大语言模型架构协同设计的核心奥秘。论文展示了如何突破内存、计算和通信瓶颈,实现低成本、高效率的大规模AI训练与推理。不仅总结了实践经验,还为未来AI硬件与模型协同设计提出了建议。
Mixture-of-Experts(MoE)在推理时仅激活每个 token 所需的一小部分专家,凭借其稀疏激活的特点,已成为当前 LLM 中的主流架构。然而,MoE 虽然显著降低了推理时的计算量,但整体参数规模依然大于同等性能的 Dense 模型,因此在显存资源极为受限的端侧部署场景中,仍然面临较大挑战。
微软研究院开源的原生1bit大模型BitNet b1.58 2B4T,将低精度与高效能结合,开创了AI轻量化的新纪元。通过精心设计的推理框架,BitNet不仅突破了内存的限制,还在多项基准测试中表现出色,甚至与全精度模型不相上下。
3月末,多家海外存储头部企业,宣布从4月起提高部分产品报价,国内厂商也随之上调价格,终结了DRAM内存与NAND闪存的降价势头。
在大模型争霸的时代,算力与效率的平衡成为决定胜负的关键。
通过完全启用并发多块执行,支持任意专家数量(MAX_EXPERT_NUMBER==256),并积极利用共享内存(5kB LDS)和寄存器(52 VGPRs,48 SGPRs),MoE Align & Sort逻辑被精心设计,实现了显著的性能提升:A100提升3倍,H200提升3倍,MI100提升10倍,MI300X/MI300A提升7倍...
大模型同样的上下文窗口,只需一半内存就能实现,而且精度无损? 前苹果ASIC架构师Nils Graef,和一名UC伯克利在读本科生一起提出了新的注意力机制Slim Attention。
DeepSeek MoE“变体”来了,200美元以内,内存需求减少17.6-42%! 名叫CoE(Chain-of-Experts),被认为是一种“免费午餐”优化方法,突破了MoE并行独立处理token、整体参数数量较大需要大量内存资源的局限。