
大模型终端部署新趋势:硬件直接支持混合矩阵乘法
大模型终端部署新趋势:硬件直接支持混合矩阵乘法在人工智能领域,模型参数的增多往往意味着性能的提升。但随着模型规模的扩大,其对终端设备的算力与内存需求也日益增加。低比特量化技术,由于可以大幅降低存储和计算成本并提升推理效率,已成为实现大模型在资源受限设备上高效运行的关键技术之一。然而,如果硬件设备不支持低比特量化后的数据模式,那么低比特量化的优势将无法发挥。
在人工智能领域,模型参数的增多往往意味着性能的提升。但随着模型规模的扩大,其对终端设备的算力与内存需求也日益增加。低比特量化技术,由于可以大幅降低存储和计算成本并提升推理效率,已成为实现大模型在资源受限设备上高效运行的关键技术之一。然而,如果硬件设备不支持低比特量化后的数据模式,那么低比特量化的优势将无法发挥。
在Meta的Llama 3.1训练过程中,其运行的1.6万个GPU训练集群每3小时就会出现一次故障,意外故障中的半数都是由英伟达H100 GPU和HBM3内存故障造成的。
一半以上的故障都归因于 GPU 及其高带宽内存。
HBM因AI大模型训练需求爆增,市场火热。
在训练大型语言模型(LLM)时,Adam(W) 基本上已经成为了人们默认使用的优化器。
开源大语言模型(LLM)百花齐放,为了让它们适应各种下游任务,微调(fine-tuning)是最广泛采用的基本方法。基于自动微分技术(auto-differentiation)的一阶优化器(SGD、Adam 等)虽然在模型微调中占据主流,然而在模型越来越大的今天,却带来越来越大的显存压力。
如何在有限的内存下实现高效的大模型推理,是端侧AI发展的重要任务。
天津大学量子智能与语言理解团队创新性地将量子计算引入隐式神经表征领域,提出了量子隐式表征网络(Quantum Implicit Representation Network, QIREN)。
基于 Transformer架构的大型语言模型在各种基准测试中展现出优异性能,但数百亿、千亿乃至万亿量级的参数规模会带来高昂的服务成本。例如GPT-3有1750亿参数,采用FP16存储,模型大小约为350GB,而即使是英伟达最新的B200 GPU 内存也只有192GB ,更不用说其他GPU和边缘设备。
外媒最新消息称,美国政府正在考虑进一步限制中国获得尖端半导体技术,包括用于制造AI加速器的关键硬件技术全环绕栅极(GAA)和高带宽内存(HBM)。