
华为诺亚频域LLM「帝江」:仅需1/50训练成本,7B模型媲美LLaMA,推理加速5倍
华为诺亚频域LLM「帝江」:仅需1/50训练成本,7B模型媲美LLaMA,推理加速5倍基于 Transformer 架构的大语言模型在 NLP 领域取得了令人惊艳的效果,然而,Transformer 中自注意力带来的二次复杂度使得大模型的推理成本和内存占用十分巨大,特别是在长序列的场景中。
基于 Transformer 架构的大语言模型在 NLP 领域取得了令人惊艳的效果,然而,Transformer 中自注意力带来的二次复杂度使得大模型的推理成本和内存占用十分巨大,特别是在长序列的场景中。
3 月 6 日,田渊栋又一项研究出炉,这次,他们主攻 LLM 内存效率。除了田渊栋本人,还有来自加州理工学院、德克萨斯大学奥斯汀分校以及 CMU 的研究者。
模型量化是模型压缩与加速中的一项关键技术,其将模型权重与激活值量化至低 bit,以允许模型占用更少的内存开销并加快推理速度。对于具有海量参数的大语言模型而言,模型量化显得更加重要。
陈丹琦团队刚刚发布了一种新的LLM上下文窗口扩展方法:它仅用8k大小的token文档进行训练,就能将Llama-2窗口扩展至128k。
英伟达的产能上不来,很大程度上是因为HBM(高带宽内存)不够用了。每一块H100芯片,都会用到6颗HBM。当下,SK海力士、三星供应了90%的HBM,并且技术领先美光整整一个代际。
为了应对大模型不断复杂的推理和训练,英伟达、AMD、英特尔、谷歌、微软、Meta、Arm、高通、MatX以及Lemurian Labs,纷纷开始研发全新的硬件解决方案。
2023 年,大型语言模型(LLM)以其强大的生成、理解、推理等能力而持续受到高度关注。然而,训练和部署 LLM 非常昂贵,需要大量的计算资源和内存,因此研究人员开发了许多用于加速 LLM 预训练、微调和推理的方法。
近年来,随着Transformer模型的大规模发展和应用,模型大小每两年平均增长240倍,GPT-3等大模型的参数增长已经超过了GPU内存的增长。在大算力激增的需求下,越来越多行业人士认识到,新的计算架构或许才是算力破局的关键。
近日,苹果连发两篇论文,不仅能一键生成逼真的3D化身,而且还要把大模型装进你的iPhone
大语言模型需要消耗巨量的GPU内存。有可能一个单卡GPU跑推理吗?可以的话,最低多少显存?70B大语言模型仅参数量就有130GB,仅仅把模型加载到GPU显卡里边就需要2台顶配100GB内存的A100。