
华人科学家登上Nature:几行代码,优化复合AI系统
华人科学家登上Nature:几行代码,优化复合AI系统华人学者、斯坦福大学副教授 James Zou 领导的团队提出了 TextGrad ,通过文本自动化“微分”反向传播大语言模型(LLM)文本反馈来优化 AI 系统。只需几行代码,你就可以自动将用于分类数据的“逐步推理”提示转换为一个更复杂的、针对特定应用的提示。
来自主题: AI技术研报
5628 点击 2025-03-24 09:00
华人学者、斯坦福大学副教授 James Zou 领导的团队提出了 TextGrad ,通过文本自动化“微分”反向传播大语言模型(LLM)文本反馈来优化 AI 系统。只需几行代码,你就可以自动将用于分类数据的“逐步推理”提示转换为一个更复杂的、针对特定应用的提示。
我亲眼见证了数据量的爆炸式增长以及行业的巨额投入。当时就很明显,AI是推动这些数据增长背后的关键动力。那是一个非常有趣的时刻——Meta正在完成“移动优先”的过渡,开始迈向“AI 优先”。