
真实联网搜索Agent,7B媲美满血R1,华为盘古DeepDiver给出开域信息获取新解法
真实联网搜索Agent,7B媲美满血R1,华为盘古DeepDiver给出开域信息获取新解法大型语言模型 (LLM) 的发展日新月异,但实时「内化」与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?
大型语言模型 (LLM) 的发展日新月异,但实时「内化」与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?
随着大型语言模型(LLM)技术的不断发展,Chain-of-Thought(CoT) 等推理增强方法被提出,以期提升模型在数学题解、逻辑问答等复杂任务中的表现,并通过引导模型逐步思考,有效提高了模型准确率。
MCP 是一种开放的技术协议,旨在标准化大型语言模型(LLM)与外部工具和服务的交互方式。你可以把 MCP 理解成像是一个 AI 世界的通用翻译官,让 AI 模型能够与各种各样的外部工具"对话"。
在前端开发领域,Vue 框架一直以其易用性和灵活性受到广大开发者的喜爱。而如今,Vue 生态在人工智能(AI)领域的应用上又迈出了重要的一步。尤雨溪近日宣布,Vue、Vite 和 Rolldown 的文档网站均已添加了llms.txt文件,这一举措旨在让大型语言模型(LLM)更方便地理解这些前端技术。
大型语言模型(LLMs)在上下文知识理解方面取得了令人瞩目的成功。
大型语言模型(LLMs)在广泛的自然语言处理(NLP)任务中展现出了卓越的能力。
随着大型语言模型(LLMs)日益融入关键决策场景,其元认知能力——即识别、评估和表达自身知识边界的能力——变得尤为重要。
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
Hyper-RAG利用超图同时捕捉原始数据中的低阶和高阶关联信息,最大限度地减少知识结构化带来的信息丢失,从而减少大型语言模型(LLM)的幻觉。
近年来,随着大型语言模型(LLMs)的快速发展,多模态理解领域取得了前所未有的进步。像 OpenAI、InternVL 和 Qwen-VL 系列这样的最先进的视觉-语言模型(VLMs),在处理复杂的视觉-文本任务时展现了卓越的能力。