
大模型智能体如何突破规模化应用瓶颈,核心在于Agentic ROI
大模型智能体如何突破规模化应用瓶颈,核心在于Agentic ROI上海交通大学联合中科大在本文中指出:现阶段大模型智能体的主要障碍不在于模型能力不足,而在于其「Agentic ROI」尚未达到实用化门槛。研究团队提出 Agentic ROI(Agentic Return on Investment)这一核心指标,用于衡量一个大模型智能体在真实使用场景中所带来的「信息收益」与其「使用成本」之间的比值:
上海交通大学联合中科大在本文中指出:现阶段大模型智能体的主要障碍不在于模型能力不足,而在于其「Agentic ROI」尚未达到实用化门槛。研究团队提出 Agentic ROI(Agentic Return on Investment)这一核心指标,用于衡量一个大模型智能体在真实使用场景中所带来的「信息收益」与其「使用成本」之间的比值:
近期,大模型智能体(Agent)的相关话题爆火 —— 不论是 Anthropic 抢先 MCP 范式的快速普及,还是 OpenAI 推出的 Agents SDK 以及谷歌最新发布的 A2A 协议,都预示了 AI Agent 的巨大潜力。
Zep,一个为大模型智能体提供长期记忆的插件,能将智能体的记忆组织成情节,从这些情节中提取实体及其关系,并将它们存储在知识图谱中,从而让用户以低代码的方式为智能力构建长期记忆。
在处理这类复杂任务的过程中,大模型智能体将问题分解为可执行的工作流(Workflow)是关键的一步。然而,这一核心能力目前缺乏完善的评测基准。为解决上述问题,浙大通义联合发布WorfBench——一个涵盖多场景和复杂图结构工作流的统一基准,以及WorfEval——一套系统性评估协议,通过子序列和子图匹配算法精准量化大模型生成工作流的能力。
给大模型智能体组一桌“大富翁”,他们会选择合作还是相互拆台? 实验表明,不同的模型在这件事上喜好也不一样,比如基于Claude 3.5 Sonnet的智能体,就会表现出极强的合作意识。 而GPT-4o则是主打一个“自私”,只考虑自己的短期利益。
近日,清华大学电子系城市科学与计算研究中心的研究论文《EconAgent: Large Language Model-Empowered Agents for Simulating Macroeconomic Activities》获得自然语言处理顶会 ACL 2024杰出论文奖(Outstanding Paper Award)。
这一全新升级的智能体群,预示着汽车安全技术的又一次飞跃。
就在去年,由斯坦福大学和谷歌的研究团队开发的“AI小镇”一举引爆了人工智能社区,成为各大媒体争相报道的热点。他们让多个基于大语言模型(LLMs)的智能体扮演不同的身份和角色在虚拟小镇上工作和生活,将《西部世界》中的科幻场景照进了现实中。
基于案例的推理助力大模型智能体挑战自动化数据科学任务,吉大、上交和汪军团队发布专注于数据科学的智能体构建框架 DS-Agent。
将LLM应用于基于智能体的仿真的动机是什么? 在环境感知、人类协调、行为生成和评估中的挑战有哪些?一文为你讲清。