
反正都是生成式模型,人和AI又有啥区别?|智能渐近线
反正都是生成式模型,人和AI又有啥区别?|智能渐近线当前,生成式AI正席卷整个社会,大语言模型(LLMs)在文本(ChatGPT)和图像(DALL-E)生成方面取得了令人惊叹的成就,仅仅依赖零星几个提示词,它们就能生成超出预期的内容
当前,生成式AI正席卷整个社会,大语言模型(LLMs)在文本(ChatGPT)和图像(DALL-E)生成方面取得了令人惊叹的成就,仅仅依赖零星几个提示词,它们就能生成超出预期的内容
一家总部位于美国加州的初创公司Tilde,正在构建解释器模型,解读模型的推理过程,并通过引导采样动态调整生成策略,提升大语言模型的推理能力和生成精度。相比直接优化提示的提示工程,这一方法展现出更灵活高效的潜力,有望重塑AI交互方式。
让AI来评判AI,即利用大语言模型(LLM)作为评判者,已经成为近半年的Prompt热点领域。这个方向不仅代表了AI评估领域的重要突破,更为正在开发AI产品的工程师们提供了一个全新的思路。
近日,《Mechanical System and Signal Processing》(MSSP)在线发表刊登北航 PHM 团队最新研究成果:基于大语言模型的轴承故障诊断框架(LLM-based Framework for Bearing Fault Diagnosis)。
2022 年,以ChatGPT 大语言模型(LLM)的发布为标志, AI 神经网络的类人学习能力取得了里程碑式的进展,在全球范围内掀起了一股 AI 热潮。
在人工智能领域,大语言模型(LLM)的向量嵌入能力一直被视为处理文本数据的利器。然而,斯坦福大学和Google DeepMind的研究团队带来了一个颠覆性发现:LLM的向量嵌入能力可以有效应用于回归任务。
在当今人工智能迅猛发展的时代,大语言模型(LLMs)已成为众多AI应用的核心引擎。然而,来自ETH Zurich和Google DeepMind的一项最新研究揭示了一个令人深思的现象:这些看似强大的模型存在着严重的“盲从效应”。
近日,DeepMind 团队将水印技术和投机采样(speculative sampling)结合,在为大语言模型加入水印的同时,提升其推理效率,降低推理成本,因此适合用于大规模生产环境。
新的大语言模型(LLM)评估基准对于跟上大语言模型的快速发展至关重要。
随着大语言模型(LLMs)在处理复杂任务中的广泛应用,高质量数据的获取变得尤为关键。为了确保模型能够准确理解并执行用户指令,模型必须依赖大量真实且多样化的数据进行后训练。然而,获取此类数据往往伴随着高昂的成本和数据稀缺性。因此,如何有效生成能够反映现实需求的高质量合成数据,成为了当前亟需解决的核心挑战。