
与OpenAI o1技术理念相似,TDPO-R算法有效缓解奖励过优化问题
与OpenAI o1技术理念相似,TDPO-R算法有效缓解奖励过优化问题OpenAI 最近发布的 o1 模型在数学、代码生成和长程规划等复杂任务上取得了突破性进展,据业内人士分析披露,其关键技术在于基于强化学习的搜索与学习机制。通过迭代式的自举过程,o1 基于现有大语言模型的强大推理能力,生成合理的推理过程,并将这些推理融入到其强化学习训练过程中。
OpenAI 最近发布的 o1 模型在数学、代码生成和长程规划等复杂任务上取得了突破性进展,据业内人士分析披露,其关键技术在于基于强化学习的搜索与学习机制。通过迭代式的自举过程,o1 基于现有大语言模型的强大推理能力,生成合理的推理过程,并将这些推理融入到其强化学习训练过程中。
这两天,Claude 3.5 Sonnet升级版刷爆了朋友圈,满屏都是:它能像人一样操作电脑。 大语言模型(Large Language Model,LLM)能够像人一样操作电脑这件事,看起来蛮炸裂的,但在AI Agent圈子里早已经见多不怪了。
TL;DR:DuoAttention 通过将大语言模型的注意力头分为检索头(Retrieval Heads,需要完整 KV 缓存)和流式头(Streaming Heads,只需固定量 KV 缓存),大幅提升了长上下文推理的效率,显著减少内存消耗、同时提高解码(Decoding)和预填充(Pre-filling)速度,同时在长短上下文任务中保持了准确率。
Maitrix.org 是由 UC San Diego, John Hopkins University, CMU, MBZUAI 等学术机构学者组成的开源组织,致力于发展大语言模型 (LLM)、世界模型 (World Model)、智能体模型 (Agent Model) 的技术以构建 AI 驱动的现实。
前不久在人工智能的帮助下,两位科学家获得了诺贝尔物理学奖。可以说人工智能已经在很多领域被广泛应用了。随着大语言模型(LLM)和深度学习的广泛应用,GPU 也已成为机器学习工程师和研究人员最重要的计算资源之一。
大型语言模型 (LLM) 在各种自然语言处理和推理任务中表现出卓越的能力,某些应用场景甚至超越了人类的表现。然而,这类模型在最基础的算术问题的表现上却不尽如人意。
大语言模型(LLM)正在推动通信行业向智能化转型,在自动生成网络配置、优化网络管理和预测网络流量等方面展现出巨大潜力。未来,LLM在电信领域的应用将需要克服数据集构建、模型部署和提示工程等挑战,并探索多模态集成、增强机器学习算法和经济高效的模型压缩技术。
在大语言模型(LLMs)后训练任务中,由于高质量的特定领域数据十分稀缺,合成数据已成为重要资源。虽然已有多种方法被用于生成合成数据,但合成数据的理论理解仍存在缺口。为了解决这一问题,本文首先对当前流行的合成数据生成过程进行了数学建模。
国庆节过后,人工智能领域似乎多了几分冷色调。不知道是因为大语言模型(Large Language Model,LLM)的幻觉,还是因为寒露时节的到来。
Robin3D通过鲁棒指令数据生成引擎(RIG)生成的大规模数据进行训练,以提高模型在3D场景理解中的鲁棒性和泛化能力,在多个3D多模态学习基准测试中取得了优异的性能,超越了以往的方法,且无需针对特定任务的微调。