
烧钱、耗费资源、难以盈利,被持续唱衰的大语言模型在艰难中倔强前行
烧钱、耗费资源、难以盈利,被持续唱衰的大语言模型在艰难中倔强前行国庆节过后,人工智能领域似乎多了几分冷色调。不知道是因为大语言模型(Large Language Model,LLM)的幻觉,还是因为寒露时节的到来。
国庆节过后,人工智能领域似乎多了几分冷色调。不知道是因为大语言模型(Large Language Model,LLM)的幻觉,还是因为寒露时节的到来。
Robin3D通过鲁棒指令数据生成引擎(RIG)生成的大规模数据进行训练,以提高模型在3D场景理解中的鲁棒性和泛化能力,在多个3D多模态学习基准测试中取得了优异的性能,超越了以往的方法,且无需针对特定任务的微调。
多模态大语言模型(MLLM)如今已是大势所趋。 过去的一年中,闭源阵营的GPT-4o、GPT-4V、Gemini-1.5和Claude-3.5等模型引领了时代。
5 大证据显示,LLM 在推理复杂问题时非常脆弱。
该研究主要探讨了大语言模型的全局剪枝方法,旨在提高预训练语言模型的效率。该成果的发表为大模型的剪枝与优化研究提供了新的视角,并在相关领域具有重要的应用潜力。
大语言模型市场的整合与差异:大语言模型市场存在整合的趋势。一方面,人工智能发展的基础产业是资本密集型的,市场整合对于大语言模型市场的资本支撑是必要的。另一方面,为尽可能提高算法的泛化能力,单个大语言模型也需要集成多种创新功能。市场集中度的提高使得企业需要进一步考虑大语言模型的差异化。
准确的统计数据、时效性强的信息,一直是大语言模型产生幻觉的重灾区。谷歌在近日推出了自己筹划已久的大型数据库Data Commons,以及在此基础上诞生的大模型DataGemma。
大语言模型(Large Language Models, LLMs)的强大能力推动了 LLM Agent 的迅速发展。围绕增强 LLM Agent 的能力,近期相关研究提出了若干关键组件或工作流。然而,如何将核心要素集成到一个统一的框架中,能够进行端到端优化,仍然是一个亟待解决的问题。
中科大成果,拿下图学习“世界杯”单项冠军! 由中科大王杰教授团队(MIRA Lab)提出的首个具有最优性保证的大语言模型和图神经网络分离训练框架,在国际顶级图学习标准OGB(Open Graph Benchmark)挑战赛的蛋白质功能预测任务上斩获「第一名」,该纪录从2023年9月27日起保持至今。
在医疗领域中,大语言模型已经有了广泛的研究。然而,这些进展主要依赖于英语的基座模型,并受制于缺乏多语言医疗专业数据的限制,导致当前的医疗大模型在处理非英语问题时效果不佳。