史上最严“中文真实性评估”:OpenAI o1第1豆包第2,其它全部不及格
史上最严“中文真实性评估”:OpenAI o1第1豆包第2,其它全部不及格新的大语言模型(LLM)评估基准对于跟上大语言模型的快速发展至关重要。
新的大语言模型(LLM)评估基准对于跟上大语言模型的快速发展至关重要。
随着大语言模型(LLMs)在处理复杂任务中的广泛应用,高质量数据的获取变得尤为关键。为了确保模型能够准确理解并执行用户指令,模型必须依赖大量真实且多样化的数据进行后训练。然而,获取此类数据往往伴随着高昂的成本和数据稀缺性。因此,如何有效生成能够反映现实需求的高质量合成数据,成为了当前亟需解决的核心挑战。
算法备案是所有AI从业者不得不迈过的门槛。这篇内容深入解读了中国《生成式人工智能服务安全基本要求》以及“生成式人工智能(大语言模型)上线备案”流程。
Infactory.ai作为一款专注于事实审查的AI搜索引擎,旨在通过使用大语言模型理解搜索意图,而非直接生成搜索结果,以此来提供准确、透明的搜索结果,从根本上避免了搜索结果的幻觉问题,同时依然能提高用户使用搜索工具的效率。
随着大语言模型在长文本场景下的需求不断涌现,其核心的注意力机制(Attention Mechanism)也获得了非常多的关注。
在Prompt工程领域,规划任务一直以来都是一个巨大的挑战,因为这要求大语言模型(LLMs)不仅能够理解自然语言,还能有效执行复杂推理和应对长时间跨度的操作。
消除激活值(outliers),大语言模型低比特量化有新招了—— 自动化所、清华、港城大团队最近有一篇论文入选了NeurIPS 2024(Oral Presentation),他们针对LLM权重激活量化提出了两种正交变换,有效降低了outliers现象,达到了4-bit的新SOTA。
近日,伊利诺伊大学香槟分校的研究团队发布了一篇开创性论文,首次从理论层面证明了大语言模型(LLM)中的prompt机制具有图灵完备性。这意味着,通过合适的prompt设计,一个固定大小的Transformer模型理论上可以计算任何可计算函数。这一突破性发现为prompt工程提供了坚实的理论基础。
网络智能体旨在让一切基于网络功能的任务自动发生。比如你告诉智能体你的预算,它可以帮你预订酒店。既拥有海量常识,又能做长期规划的大语言模型(LLM),自然成为了智能体常用的基础模块。
算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。