
ACL 2024论文盖棺定论:大语言模型≠世界模拟器,Yann LeCun:太对了
ACL 2024论文盖棺定论:大语言模型≠世界模拟器,Yann LeCun:太对了最近两天,一篇入选 ACL 2024 的论文《Can Language Models Serve as Text-Based World Simulators?》在社交媒体 X 上引发了热议,就连图灵奖得主 Yann LeCun 也参与了进来。
最近两天,一篇入选 ACL 2024 的论文《Can Language Models Serve as Text-Based World Simulators?》在社交媒体 X 上引发了热议,就连图灵奖得主 Yann LeCun 也参与了进来。
近年来,大语言模型(Large Language Models, LLMs)受到学术界和工业界的广泛关注,得益于其在各种语言生成任务上的出色表现,大语言模型推动了各种人工智能应用(例如ChatGPT、Copilot等)的发展。然而,大语言模型的落地应用受到其较大的推理开销的限制,对部署资源、用户体验、经济成本都带来了巨大挑战。
在大语言模型突飞猛进的同时,谷歌的研究团队在时序预测方面也取得了突破性的成果——今年2月发表的模型TimesFM,而且放出了模型的代码和权重,让更多开发者体验这种「开箱即用」的零样本预测能力。
不使用外部工具也能让大语言模型(LLMs)实现严谨可信的推理,新国立提出 SymbCoT 推理框架:结合符号化逻辑(Symbolic Logical)表达式与思维链,极大提升推理质量,鲁棒性与可信度。
众所周知,对于 Llama3、GPT-4 或 Mixtral 等高性能大语言模型来说,构建高质量的网络规模数据集是非常重要的。然而,即使是最先进的开源 LLM 的预训练数据集也不公开,人们对其创建过程知之甚少。
在以英语为主的语料库上训练的多语言LLM,是否使用英语作为内部语言?对此,来自EPFL的研究人员针对Llama 2家族进行了一系列实验。
时空预测技术,迎来ChatGPT时刻。
3D生成也有自个儿的人工评测竞技场了~ 来自复旦大学和上海AI lab的研究人员搞了个3DGen-Arena,和大语言模型的Chatbot-Arena、GenAI-Arena等一脉相承,要让大伙儿对3D生成模型来一场公开、匿名的评测
随着大语言模型(LLM)的快速发展,其在文本生成、翻译、总结等任务中的应用日益广泛。如微软前段时间发布的Copilot+PC允许使用者利用生成式AI进行团队内部实时协同合作,通过内嵌大模型应用,文本内容可能会在多个专业团队内部快速流转,对此,为保证内容的高度专业性和传达效率,同时平衡内容追溯、保证文本质量的LLM水印方法显得极为重要。
科学家们把Transformer模型应用到蛋白质序列数据中,试图在蛋白质组学领域复制LLM的成功。本篇文章能够带你了解蛋白质语言模型(pLM)的起源、发展,以及那些尚待解决的问题。