
开源模型「幻觉」更严重,这是三元组粒度的幻觉检测套件
开源模型「幻觉」更严重,这是三元组粒度的幻觉检测套件大模型长期以来一直存在一个致命的问题,即生成幻觉。由于数据集的复杂性,难免会包含过时和错误的信息,这使得输出质量面临着极大的挑战。过多的重复信息还可能导致大型模型产生偏见,这也算是一种形式的幻觉。
大模型长期以来一直存在一个致命的问题,即生成幻觉。由于数据集的复杂性,难免会包含过时和错误的信息,这使得输出质量面临着极大的挑战。过多的重复信息还可能导致大型模型产生偏见,这也算是一种形式的幻觉。
大模型就是「造梦机」!幻觉是LLM与生俱来的特性,而非缺陷。OpenAI科学家Andrej Karpathy独特视角在AI社区掀起了激烈的讨论。
现在的GPT-4,未来的GPT-5,相较于前几个版本性能更强。安全挑战,史无前例。
Nature刊文,从学生、老师、学要、教育平台、教育工具提供商等角度详细剖析了LLM如何重塑教育事业,变革的时刻也许已经到来了。
大语言模型「拍马屁」的问题到底要怎么解决?最近,LeCun转发了Meta发布的一篇论文,研究人员提出了新的方法,有效提升了LLM回答问题的事实性和客观性。我们一起来看一下吧。
本文讨论了大模型AI在语言生成中常出现的“幻觉”现象,即生成与输入信息不符的胡话。作者解释了“幻觉”的成因和影响,并介绍了降低“幻觉”的一些努力和突破。
基于LVLM幻觉频发的三个成因(物体共现、物体不确定性、物体位置),北卡教堂山、斯坦福、哥大、罗格斯等大学的研究人员提出幻觉修正器LURE,通过修改描述来降低幻觉问题。
视觉幻觉是常见于多模态大语言模型的一个典型问题。最近,来自中科大等机构的研究人员提出了首个多模态修正架构「啄木鸟」,可有效解决MLLM输出幻觉的问题。
相比于一味规避“有毒”数据,以毒攻毒,干脆给大模型喂点错误文本,再让模型剖析、反思出错的原因,反而能够让模型真正理解“错在哪儿了”,进而避免胡说八道。
昨天,Baichuan2-53B正式发布!首次开放API,意味着百川大模型开始正式进军商用了。另外,模型的数学和逻辑推理能力都大幅飙升,对于幻觉的处理,已经在国内遥遥领先。