
从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准
从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。然而,现有 RAG 系统在面对需多步逻辑推理任务时仍存在显著局限,具体挑战如下:
在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。然而,现有 RAG 系统在面对需多步逻辑推理任务时仍存在显著局限,具体挑战如下:
Meta超级智能实验室的首篇论文,来了—— 提出了一个名为REFRAG的高效解码框架,重新定义了RAG(检索增强生成),最高可将首字生成延迟(TTFT)加速30倍。
一个小解码器让所有模型当上领域专家!华人团队新研究正在引起热议。 他们提出了一种比目前业界主流采用的DAPT(领域自适应预训练)和RAG(检索增强生成)更方便、且成本更低的方法。
一句话概括,还在嫌弃RAG太慢?这帮研究员直接把检索数据库"蒸馏"成了一个小模型,实现了不检索的检索增强,堪称懒人福音。
长久以来我们都知道在Prompt里塞几个好例子能让LLM表现得更好,这就像教小孩学东西前先给他做个示范。在Vibe coding爆火后,和各种代码生成模型打交道的人变得更多了,大家也一定用过上下文学习(In-Context Learning, ICL)或者检索增强生成(RAG)这类技术来提升它的表现。
北京大学提出了ReMoMask:一种全新的基于检索增强生成的Text-to-Motion框架。它是一个集成三项关键创新的统一框架:(1)基于动量的双向文本-动作模型,通过动量队列将负样本的尺度与批次大小解耦,显著提高了跨模态检索精度;(2)语义时空注意力机制,在部件级融合过程中强制执行生物力学约束,消除异步伪影;(3)RAG-无分类器引导结合轻微的无条件生成以增强泛化能力。
现在的RAG(检索增强生成)系统。您给它一个简单直接的问题,它能答得头头是道
RAG(检索增强生成)作为解决大模型"幻觉"和知识时效性问题的关键技术,已成为企业AI应用的主流架构。Contextual AI由RAG技术的创始研究者组建,致力于开发能应对复杂知识密集型任务的专业智能体。
2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。
突破传统检索增强生成(RAG)技术的单一文本局限,实现对文档中文字、图表、表格、公式等复杂内容的统一智能理解。