
「世界模型」也被泼冷水了?邢波等人揭开五大「硬伤」,提出新范式
「世界模型」也被泼冷水了?邢波等人揭开五大「硬伤」,提出新范式现在的世界模型,值得批判。 我们知道,大语言模型(LLM)是通过预测对话的下一个单词的形式产生输出的。由此产生的对话、推理甚至创作能力已经接近人类智力水平。
现在的世界模型,值得批判。 我们知道,大语言模型(LLM)是通过预测对话的下一个单词的形式产生输出的。由此产生的对话、推理甚至创作能力已经接近人类智力水平。
Mamba一作最新大发长文! 主题只有一个,即探讨两种主流序列模型——状态空间模型(SSMs)和Transformer模型的权衡之术。
来自加州大学河滨分校(UC Riverside)、密歇根大学(University of Michigan)、威斯康星大学麦迪逊分校(University of Wisconsin–Madison)、德州农工大学(Texas A&M University)的团队在 ICCV 2025 发表首个面向自动驾驶语义占用栅格构造或预测任务的统一基准框架 UniOcc。
论文提出一种AI自我反思方法:通过反思错误原因、重试任务、奖励成功反思来优化训练。
ChatGPT的对话流畅性、Gemini的多模态能力、DeepSeek的长上下文分析……
NCAL是一种新的个性化学习方法,它通过优化文本嵌入的分布来解决教育数据中常见的长尾分布问题,从而提高模型对少数类别的处理能力。
学好数理化,走遍天下都不怕! 这一点这在大语言模型身上也不例外。
香港大学NLP团队联合字节跳动Seed、复旦大学发布名为Polaris的强化学习训练配方:通过Scaling RL,Polaris让4B模型的数学推理能力(AIME25上取得79.4,AIME24上取得81.2)超越了一众商业大模型,如Seed-1.5-thinking、Claude-4-Opus和o3-mini-high(25/01/31)。
最少只用2张图,AI就能像人类一样理解3D空间了。ICCV 2025最新中稿的LangScene-X:以全新的生成式框架,仅用稀疏视图(最少只用2张图像)就能构建可泛化的3D语言嵌入场景,对比传统方法如NeRF,通常需要20个视角。
在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。