AI资讯新闻榜单内容搜索-泛化能力

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 泛化能力
跟硅谷的核心AI公司聊完后,得到了这 60 条关键洞察

跟硅谷的核心AI公司聊完后,得到了这 60 条关键洞察

跟硅谷的核心AI公司聊完后,得到了这 60 条关键洞察

对 LLM 来说,Pre-training 的时代已经基本结束了。视频模型的 Scaling Law,瓶颈还很早。具身智能:完全具备人类泛化能力的机器人,在我们这代可能无法实现

来自主题: AI资讯
6886 点击    2025-01-24 12:57
理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。

来自主题: AI技术研报
7114 点击    2024-12-31 14:19
把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源

把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源

把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源

近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。

来自主题: AI技术研报
6566 点击    2024-12-28 11:41
重塑跨智能体灵巧手抓取,NUS邵林团队提出全新交互式表征,斩获CoRL Workshop最佳机器人论文奖

重塑跨智能体灵巧手抓取,NUS邵林团队提出全新交互式表征,斩获CoRL Workshop最佳机器人论文奖

重塑跨智能体灵巧手抓取,NUS邵林团队提出全新交互式表征,斩获CoRL Workshop最佳机器人论文奖

近期,新加坡国立大学计算机学院的邵林团队提出了 D(R,O) Grasp:一种面向跨智能体灵巧抓取的机器人与物体交互统一表示。该方法通过创新性地建模机器人手与物体在抓取姿态下的交互关系,成功实现了对多种机器人手型与物体几何形状的高度泛化能力,为灵巧抓取技术的未来开辟了全新的方向。

来自主题: AI技术研报
7758 点击    2024-12-21 11:21
离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞

离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞

离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞

Lilian Weng离职OpenAI后首篇博客发布!文章深入讨论了大模型强化学习中的奖励欺骗问题。随着语言模型在许多任务上的泛化能力不断提升,以及RLHF逐渐成为对齐训练的默认方法,奖励欺骗在语言模型的RL训练中已经成为一个关键的实践性难题。

来自主题: AI资讯
7183 点击    2024-12-06 09:54
让模型预见分布漂移:动态系统颠覆性设计引领时域泛化新革命|NeurIPS 2024

让模型预见分布漂移:动态系统颠覆性设计引领时域泛化新革命|NeurIPS 2024

让模型预见分布漂移:动态系统颠覆性设计引领时域泛化新革命|NeurIPS 2024

研究人员提出了一种方法,能够在领域数据分布持续变化的动态环境中,基于随机时刻观测的数据分布,在任意时刻生成适用的神经网络,实现前所未有的泛化能力。

来自主题: AI技术研报
7530 点击    2024-12-02 15:25
全球十亿级轨迹点驱动,首个轨迹基础大模型来了

全球十亿级轨迹点驱动,首个轨迹基础大模型来了

全球十亿级轨迹点驱动,首个轨迹基础大模型来了

在智慧城市和大数据时代背景下,人类轨迹数据的分析对于交通优化、城市管理、物流配送等关键领域具有重要意义。然而,现有的轨迹相关模型往往受限于特定任务、区域依赖、轨迹数据规模和多样性困乏等问题,限制了模型的泛化能力和实际应用范围。

来自主题: AI技术研报
8591 点击    2024-11-22 17:21
具身大模型学习——OCTO

具身大模型学习——OCTO

具身大模型学习——OCTO

在多样化的机器人数据集上预训练的大型策略有潜力改变机器人学习:与从头开始训练新策略相比,这种通用型机器人策略可以通过少量的领域内数据进行微调,同时具备广泛的泛化能力。

来自主题: AI资讯
6446 点击    2024-11-19 21:10
自一致性首选项优化SCPO,让LLM多次回答同一个问题,选输出频率最高的答案 |Meta最新

自一致性首选项优化SCPO,让LLM多次回答同一个问题,选输出频率最高的答案 |Meta最新

自一致性首选项优化SCPO,让LLM多次回答同一个问题,选输出频率最高的答案 |Meta最新

传统的训练方法通常依赖于大量人工标注的数据和外部奖励模型,这些方法往往受到成本、质量控制和泛化能力的限制。因此,如何减少对人工标注的依赖,并提高模型在复杂推理任务中的表现,成为了当前的主要挑战之一。

来自主题: AI技术研报
6810 点击    2024-11-14 14:42
详解“端到端”下一代模型VLA,通向自动驾驶的关键跳板

详解“端到端”下一代模型VLA,通向自动驾驶的关键跳板

详解“端到端”下一代模型VLA,通向自动驾驶的关键跳板

近期,智驾行业出现了一个融合了视觉、语言和动作的多模态大模型范式——VLA(Vision-Language-Action Model,即视觉-语言-动作模型),拥有更高的场景推理能力与泛化能力。不少智驾人士都将VLA视为当下“端到端”方案的2.0版本。

来自主题: AI资讯
3022 点击    2024-11-09 09:50