
开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍
开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍在大语言模型(LLMs)领域,自回归(AR)范式长期占据主导地位,但其逐 token 生成也带来了固有的推理效率瓶颈。此前,谷歌的 Gemini Diffusion 和字节的 Seed Diffusion 以每秒千余 Tokens 的惊人吞吐量,向业界展现了扩散大语言模型(dLLMs)在推理速度上的巨大潜力。
在大语言模型(LLMs)领域,自回归(AR)范式长期占据主导地位,但其逐 token 生成也带来了固有的推理效率瓶颈。此前,谷歌的 Gemini Diffusion 和字节的 Seed Diffusion 以每秒千余 Tokens 的惊人吞吐量,向业界展现了扩散大语言模型(dLLMs)在推理速度上的巨大潜力。
Token危机真的要解除了吗? 最新研究发现,在token数量受限的情况下,扩散语言模型的数据潜力可达自回归模型的三倍多。
上海人工智能实验室等团队提出Lumina-mGPT 2.0 —— 一款独立的、仅使用解码器的自回归模型,统一了包括文生图、图像对生成、主体驱动生成、多轮图像编辑、可控生成和密集预测在内的广泛任务。
近年来,文生图模型(Text-to-Image Models)飞速发展,从早期的 GAN 架构到如今的扩散和自回归模型,生成图像的质量和细节表现力实现了跨越式提升。这些模型大大降低了高质量图像创作的门槛,为设计、教育、艺术创作等领域带来了前所未有的便利。
扩散语言模型(DLMs)是超强的数据学习者。 token 危机终于要不存在了吗? 近日,新加坡国立大学 AI 研究者 Jinjie Ni 及其团队向着解决 token 危机迈出了关键一步。
在图像生成领域,自回归(Autoregressive, AR)模型与扩散(Diffusion)模型之间的技术路线之争始终未曾停歇。大语言模型(LLM)凭借其基于「预测下一个词元」的优雅范式,已在文本生成领域奠定了不可撼动的地位。
声音理解能力新SOTA,小米全量开源了模型。 MiDashengLM-7B,基于Xiaomi Dasheng作为音频编码器和Qwen2.5-Omni-7B Thinker作为自回归解码器,通过创新的通用音频描述训练策略,实现了对语音、环境声音和音乐的统一理解。
用扩散模型写代码,不仅像开了倍速,改起来还特别灵活! 字节Seed最新发布扩散语言模型Seed Diffusion Preview,这款模型主要聚焦于代码生成领域,它的特别之处在于采用了离散状态扩散技术,在推理速度上表现出色。
当下的AI图像生成领域,Diffusion模型无疑是绝对的王者,但在精准控制上却常常“心有余而力不足”。
近年来,语言模型的显著进展主要得益于大规模文本数据的可获得性以及自回归训练方法的有效性。