
7B超越GPT!1/20数据,无需知识蒸馏,马里兰等推出全新视觉推理方法
7B超越GPT!1/20数据,无需知识蒸馏,马里兰等推出全新视觉推理方法通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
来自主题: AI技术研报
7275 点击 2025-04-28 16:59
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
芯片设计是现代科技的核心,逻辑优化(Logic Optimization, LO)作为芯片设计流程中的关键环节,其效率直接影响着芯片设计的整体性能。
把扩散模型的生成能力与 MCTS 的自适应搜索能力相结合,会是什么结果?
北京交通大学研究团队悄默声推出了一版o1,而且所有源代码、精选数据集以及衍生模型都开源!
通过算法层面的创新,未来大语言模型做数学题的水平会不断地提高。