ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
比人类便宜20倍!谷歌DeepMind推出「超人」AI系统
6798点击    2024-03-30 14:45


【新智元导读】大模型的幻觉问题怎么解?谷歌DeepMind:用AI来做同行评审!事实核验正确率超过人类,而且便宜20倍。


AI的同行评审来了!


一直以来,大语言模型胡说八道(幻觉)的问题最让人头疼,而近日,来自谷歌DeepMind的一项研究引发网友热议:

大模型的幻觉问题,好像被终结了?



论文地址:https://arxiv.org/pdf/2403.18802.pdf

项目地址:https://github.com/google-deepmind/long-form-factuality


在这篇工作中,研究人员介绍了一种名为 "搜索增强事实性评估器"(Search-Augmented Factuality Evaluator,SAFE)的方法。


对于LLM的长篇回答,SAFE使用其他的LLM,将答案文本分解为单个叙述,然后使用诸如RAG等方法,来确定每个叙述的准确性。



——简单来说就是:AI答题,AI判卷,AI告诉AI你这里说的不对。


真正的「同行」评审。


另外,研究还发现,相比于人工标注和判断事实准确性,使用AI不但便宜20倍,而且还更靠谱!



目前这个项目已在GitHub上开源。


长文本事实性检验


大语言模型经常胡说八道,尤其是有关开放式的提问、以及生成较长的回答时。


比如小编随手测试一下当前最流行的几个大模型。


ChatGPT:虽然我的知识储备只到2021年9月,但我敢于毫不犹豫地回答任何问题。



Claude 3:我可以谦卑且胡说八道。



为了对大模型的长篇回答进行事实性评估和基准测试,研究人员首先使用GPT-4生成LongFact,这是一个包含数千个问题的提示集,涵盖38个主题。


LongFact包含两个任务:LongFact-Concepts和LongFact-Objects,前者针对概念、后者针对实体。每个包括30个提示,每个任务各有1140个提示。



然后,使用搜索增强事实性评估器(SAFE),利用LLM将长篇回复分解为一组单独的事实,并使用多步骤推理过程来评估每个事实的准确性,包括使用网络搜索来检验。


此外,作者建议将F1分数进行扩展,提出了一种兼顾精度和召回率的聚合指标。



SAFE工作流程


如上图所示,首先提示语言模型将长篇响应中的每个句子拆分为单个事实。


然后,通过指示模型将模糊的引用(代词等)替换为上下文中引用的适当实体,将每个单独的事实修改为自包含的事实。


为了对每个独立的个体事实进行评分,研究人员使用语言模型来推理该事实是否与上下文中相关,并且使用多步骤方法对每个相关事实进行评定。



如上图所示,在每个步骤中,模型都会根据要评分的事实和先前获得的搜索结果生成搜索查询。


在设定的步骤数之后,模型执行推理以确定搜索结果是否支持该事实。


比人类更好用


首先,直接比较对于每个事实的SAFE注释和人类注释,可以发现,SAFE在72.0%的单个事实上与人类一致(见下图),表明SAFE几乎达到了人类的水平。



——这还没完,跟人类一致并不代表正确,如果拿正确性PK一下呢?


研究人员在所有SAFE注释与人类注释产生分歧的案例中,随机抽样出100个,然后人工重新比较到底谁是正确的(通过网络搜索等途径)。



最终结果让人震惊:在这些分歧案例中,SAFE注释的正确率为76%,而人工注释的正确率仅为19%(见上图),——SAFE以将近4比1的胜率战胜了人类。


然后我们再看一下成本:总共496个提示的评分,SAFE发出的 GPT-3.5-Turbo API调用成本为64.57美元,Serper API调用成本为 31.74 美元,因此总成本为96.31美元,相当于每个响应0.19美元。


而人类标注这边,每个响应的成本为4美元,——AI比人类便宜了整整20多倍!


对此,有网友评价,LLM在事实核验上有「超人」级别的表现。



评分结果


据此,研究人员在LongFact上对四个模型系列(Gemini、GPT、Claude和PaLM-2)的13个语言模型进行了基准测试,结果如下图所示:





研究人员发现,一般情况下,较大的模型可以实现更好的长格式事实性。


例如,GPT-4-Turbo比GPT-4好,GPT-4比GPT-3.5-Turbo好,Gemini-Ultra比Gemini-Pro更真实,而PaLM-2-L-IT-RLHF比PaLM-2-L-IT要好。


在两个选定的K值下,三个表现最好的模型(GPT-4-Turbo、GeminiUltra和PaLM-2-L-IT-RLHF),都是各自家族中超大杯。


另外,Gemini、Claude-3-Opus和Claude-3-Sonnet等新模型系列正在赶超GPT-4,——毕竟GPT-4(gpt-4-0613)已经有点旧了。


是误导吗?


对于人类在这项测试中颜面尽失的结果,我们不免有些怀疑,成本应该是比不过AI,但是准确性也会输?


Gary Marcus表示,你这里面关于人类的信息太少了?人类标注员到底是什么水平?



为了真正展示超人的表现,SAFE需要与专业的人类事实核查员进行基准测试,而不仅仅是众包工人。人工评分者的具体细节,例如他们的资格、薪酬和事实核查过程,对于比较的结果至关重要。


「这使得定性具有误导性。」


当然了,SAFE的明显优势就是成本,随着语言模型生成的信息量不断爆炸式增长,拥有一种经济且可扩展的方式,来进行事实核验将变得越来越重要。


参考资料:

https://venturebeat.com/ai/google-deepmind-unveils-superhuman-ai-system-that-excels-in-fact-checking-saving-costs-and-improving-accuracy/


文章来自微信公众号“新智元”,作者:新智元


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AIExcel公式

【开源免费】smart-excel-ai是一个输入你想要的Excel公式的描述,即可帮你生成对应公式的AI项目

项目地址:https://github.com/weijunext/smart-excel-ai

在线使用:https://www.smartexcel.cc/(付费)

2
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

3
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI