ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
《Python 机器学习》作者新作:从头开始构建大型语言模型,代码已开源
9251点击    2024-06-22 23:02

自 ChatGPT 发布以来,大型语言模型(LLM)已经成为推动人工智能发展的关键技术。


近期,机器学习和 AI 研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又写了一本新书 ——《Build a Large Language Model (From Scratch)》,旨在讲解从头开始构建大型语言模型的整个过程,包括如何创建、训练和调整大型语言模型。



最近,Sebastian Raschka 在 GitHub 上开源了这本新书对应的代码库。



项目地址:https://github.com/rasbt/LLMs-from-scratch/tree/main?tab=readme-ov-file


对 LLM 来说,指令微调能够有效提升模型性能,因此各种指令微调方法陆续被提出。Sebastian Raschka 发推重点介绍了项目中关于指令微调的部分,其中讲解了:


  • 如何将数据格式化为 1100 指令 - 响应对;
  • 如何应用 prompt-style 模板;
  • 如何使用掩码。



《Build a Large Language Model (From Scratch)》用清晰的文字、图表和示例解释每个阶段,从最初的设计和创建,到采用通用语料库进行预训练,一直到针对特定任务进行微调。



具体来说,新书和项目讲解了如何:


  • 规划和编码 LLM 的所有部分;
  • 准备适合 LLM 训练的数据集;
  • 使用自己的数据微调 LLM;
  • 应用指令调整方法来确保 LLM 遵循指令;
  • 将预训练权重加载到 LLM 中。


作者介绍



个人主页:https://sebastianraschka.com/


Sebastian Raschka 是一名机器学习和人工智能研究员,曾在威斯康星大学麦迪逊分校担任统计学助理教授,专门研究深度学习和机器学习。他让关于 AI 和深度学习相关的内容更加容易获得,并教人们如何大规模利用这些技术。


此外,Sebastian 热衷于开源软件,十多年来一直是一个充满热情的开源贡献者。他提出的方法现已成功应用于 Kaggle 等机器学习竞赛。


除了编写代码,Sebastian 还喜欢写作,并撰写了畅销书《Python Machine Learning》(《Python 机器学习》)和《Machine Learning with PyTorch and ScikitLearn》。


文章来源于“机器之心”


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

2
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0