
区区一款 AI 会议记录软件凭什么值 2.5 亿美元?| 深度拆解 Granola 的产品哲学
区区一款 AI 会议记录软件凭什么值 2.5 亿美元?| 深度拆解 Granola 的产品哲学「十字路口」的每一次选题、每一场活动,都像投早期项目 ——我们不只是做内容,而是希望成为「创业者声量放大器 + 早期项目雷达」。
「十字路口」的每一次选题、每一场活动,都像投早期项目 ——我们不只是做内容,而是希望成为「创业者声量放大器 + 早期项目雷达」。
translate.js(https://github.com/xnx3/translate)是面向开发者打造的一个简单而强大的前端国际化工具,专注于提供极简高效的多语言切换能力。项目完全开源并允许商业使用。
2024年,伯克利人工智能研究中心(BAIR)率先提出了一个新概念——复合人工智能系统(Compound AI Systems,简称CAIS)。这个看似简单的术语背后,蕴含着AI系统架构的根本性改变:不再依赖单一LLM的"超级大脑",而是构建多组件协同的"智能生态系统"。
当前,强化学习(RL)在提升大语言模型(LLM)推理能力方面展现出巨大潜力。DeepSeek R1、Kimi K1.5 和 Qwen 3 等模型充分证明了 RL 在增强 LLM 复杂推理能力方面的有效性。
苹果最新大模型论文,在AI圈炸开了锅。 有人总结到:苹果刚刚当了一回马库斯,否定了所有大模型的推理能力。
Test time scaling范式蓬勃发展。推理模型持续快速改进,变得更为高效且价格更为亲民。在评估现实世界软件工程任务(如 SWE-Bench)时,模型以更低的成本取得了更高的分数。以下是显示模型变得更便宜且更优秀的图表。
注意力机制的「平方枷锁」,再次被撬开!一招Fenwick树分段,用掩码矩阵,让注意力焕发对数级效率。更厉害的是,它无缝对接线性注意力家族,Mamba-2、DeltaNet 全员提速,跑分全面开花。长序列处理迈入log时代!
图神经网络还能更聪明?思维链提示学习来了!
该项目来自百家 AI,是北京邮电大学白婷副教授所指导的研究小组, 团队致力于为硅基人类倾力打造情感饱满、记忆超凡的智慧大脑。
Hinton梦想的AI医生要来了!斯坦福哈佛实测:o1以78%正确率超人类 新智元 新智元 2025年06月08日 12:45 北京
多模态检索是信息理解与获取的关键技术,但其中的跨模态干扰问题一直是一大难题。
最近的一篇论文中,来自人大和腾讯的研究者们的研究表明,语言模型对强化学习中的奖励噪音具有鲁棒性,即使翻转相当一部分的奖励(例如,正确答案得 0 分,错误答案得 1 分),也不会显著影响下游任务的表现。
对于许多开发者来说,每月 20 美元的 Cursor 和 Copilot 已经是“无限量”好用的标配。然而,Anthropic 的 Claude Code 却是个异类。
迄今为止行业最大的开源力度。在大模型上向来低调的小红书,昨天开源了首个自研大模型。
20万次模拟实验,耗资5000美元,证实大模型在多轮对话中的表现明显低于单轮对话!一旦模型的第一轮答案出现偏差,不要试图纠正,而是新开一个对话!
图像生成、视频创作、照片精修需要找不同的模型完成也太太太太太麻烦了。 有没有这样一个“AI创作大师”,你只需要用一句话描述脑海中的灵感,它就能自动为你搭建流程、选择工具、反复修改,最终交付高质量的视觉作品呢?
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
RNN太老,Transformer太慢?谷歌掀翻Transformer王座,用「注意力偏向+保留门」取代传统遗忘机制,重新定义了AI架构设计。全新模型Moneta、Yaad、Memora,在多个任务上全面超越Transformer。这一次,谷歌不是调参,而是换脑!
本文介绍的工作由中国人民大学高瓴人工智能学院李崇轩、文继荣教授团队与蚂蚁集团共同完成。朱峰琪、王榕甄、聂燊是中国人民大学高瓴人工智能学院的博士生,导师为李崇轩副教授。
真是屋漏偏逢连夜雨! 就在特斯拉创下单日最大跌幅,市值蒸发1500亿美元(折合人民币约10784亿元)之际,马斯克又痛失一位悍将——
在文本推理领域,以GPT-o1、DeepSeek-R1为代表的 “慢思考” 模型凭借显式反思机制,在数学和科学任务上展现出远超 “快思考” 模型(如 GPT-4o)的优势。
AI顶流Claude升级了,程序员看了都沉默:不仅能写代码能力更强了,还能连续干活7小时不出大差错!AGI真要来了?这背后到底发生了什么?现在,还有机会加入AI行业吗?如今做哪些准备,才能在未来立足?
逻辑推理是人类智能的核心能力,也是多模态大语言模型 (MLLMs) 的关键能力。随着DeepSeek-R1等具备强大推理能力的LLM的出现,研究人员开始探索如何将推理能力引入多模态大模型(MLLMs)
与OpenAI分道扬镳后,Figure 02开启日夜进厂打工模式。
能够完成多步信息检索任务,涵盖多轮推理与连续动作执行的智能体来了。通义实验室推出WebWalker(ACL2025)续作自主信息检索智能体WebDancer。
苹果最新研究揭示大推理模型(LRM)在高复杂度任务中普遍「推理崩溃」:思考路径虽长,却常在关键时刻放弃。即便给予明确算法提示,模型亦无法稳定执行,暴露推理机制的局限性。
我们拆解AI Agent的运作流程,包括感知层、决策层和执行层。
AI Agent又解锁了一个领域!清华大学牵头,与西北工业大学以及上海AI lab等机构推出了电镜领域的AI agent——AutoMat。
肾病防治迈向智能化、精准化:北大第一医院发布“肾说”大模型,医疗科技的不断创新,正在为患者提供更加高效、便捷的医疗服务。
AI模型用于工业异常检测,再次取得新SOTA!