自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。
自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。
近期,大语言模型、文生图模型等大规模 AI 模型迅猛发展。在这种形势下,如何适应瞬息万变的需求,快速适配大模型至各类下游任务,成为了一个重要的挑战。受限于计算资源,传统的全参数微调方法可能会显得力不从心,因此需要探索更高效的微调策略。
自动将不同开源模型进行组合,生成具有新能力的新模型,Sakana AI开发的新方法做到了!
哈工大联合度小满推出针对多模态模型的自适应剪枝算法 SmartTrim,论文已被自然语言处理顶级会议 COLING 24 接收。
TimesFM针对时序数据设计,输出序列长于输入序列,在1000亿时间点数据进行预训练后,仅用200M参数量就展现出超强零样本学习能力!
本文提出了扩散模型中UNet的long skip connection的scaling操作可以有助于模型稳定训练的分析,目前已被NeurIPS 2023录用。同时,该分析还可以解释扩散模型中常用但未知原理的1/√2 scaling操作能加速训练的现象。
几天前,ICLR 2024 的最终接收结果出来了。
继 2023 年 1 月 YOLOv8 正式发布一年多以后,YOLOv9 终于来了!
自 ChatGPT 等大型语言模型推出以来,为了提升模型效果,各种指令微调方法陆续被提出。本文中,普林斯顿博士生、陈丹琦学生高天宇汇总了指令微调领域的进展,包括数据、算法和评估等。
当人造大脑已能复现人脑特征,那我们对自然之脑的理解无疑更为深入。