
Claude Code的Sub-agents,烧了1000 美金才知道的血泪经验
Claude Code的Sub-agents,烧了1000 美金才知道的血泪经验自从 Claude code 上线 sub-agents 后,我一直对其抱很大的期待,每次做 case 都会搭建一支“AI coding 梦之队”。想象中,它们会在主 agent的协调下火力全开, 完成我超级复杂的需求。
自从 Claude code 上线 sub-agents 后,我一直对其抱很大的期待,每次做 case 都会搭建一支“AI coding 梦之队”。想象中,它们会在主 agent的协调下火力全开, 完成我超级复杂的需求。
Computer use是真正Agents的关键驱动力。它们的有效性取决于两个因素:能够接入多少工具,以及能否在这些工具之间进行推理。Computer use显著拓展了这两方面的能力——既赋予Agents使用任意软件的广度,也提升了它们将一系列动作串联成完整工作流的智能。
AI写论文早就不稀奇了,可如今,它甚至能提出实验方案,设计出能被验证的分子。今年10月,AI将更进一步,走上学术舞台。在一场名为Agents4Science的会议上,它不仅要当第一作者、评审,还要亲自上台报告。这不只是一次会议,更像是一场公开的实验。
近年来,以多智能体系统(MAS)为代表的研究取得了显著进展,在深度研究、编程辅助等复杂问题求解任务中展现出强大的能力。现有的多智能体框架通过多个角色明确、工具多样的智能体协作完成复杂任务,展现出明显的优势。
华为诺亚方舟实验室最近联合香港大学发了一篇针对"Deep Research Agents"(深度研究代理)的系统性综述,在我的印象中,这是他们第二次发布关于Deep Research的综述论文。上一篇里提供了一个结构导向 (Structure-Oriented) 的视角,核心是“分类”。
作为大家的测评博主,我最近发现一个巨有意思的现象: 现在市面上大部分评估 Agent 的基准测试,倾向于考核“单项技能”,而非“综合任务”。比如,你让 AI 点份外卖,它能完成;但如果要求它策划一场涵盖预算、选址、菜单、宾客邀请与流程安排的晚宴,它很可能就原地就 G 了。
近年来,大语言模型(LLM)已展现出卓越的通用能力,但其核心仍是静态的。面对日新月异的任务、知识领域和交互环境,模型无法实时调整其内部参数,这一根本性瓶颈日益凸显。
互联网技术的发展极大地便利了我们的生活,但许多网络任务重复繁琐,降低了效率。为了解决这一问题,研究人员正在开发基于大型基础模型(LFMs)的智能体——WebAgents,通过感知环境、规划推理和执行交互来完成用户指令,显著提升便利性。香港理工大学的研究人员从架构、训练和可信性等角度,总结了WebAgents的代表性方法,全面梳理了相关研究进展。
深度研究智能体(Deep Research Agents)凭借大语言模型(LLM)和视觉-语言模型(VLM)的强大能力,正在重塑知识发现与问题解决的范式。
这家公司叫Salient,主打AI agents贷款服务,刚刚在A轮融资中筹集了6000万美元,折合人民币4.3亿元。此次融资由Andreessen Horowitz旗下的a16z领投,Matrix Partners、Michael Ovitz和Y Combinator跟投。