
AI+合成生物学,世界最大蛋白质相互作用数据库!
AI+合成生物学,世界最大蛋白质相互作用数据库!AlphaFold2解决了很大程度上解决了单体蛋白质结构预测问题。
AlphaFold2解决了很大程度上解决了单体蛋白质结构预测问题。
距离GPT-4首次发布已经过去了将近一年半的时间,Nature最近发表的一篇报告却探索出了这个「过气」模型的新用途——氨基酸和蛋白质的结构建模。
AlphaFold 3的论文太晦涩?没关系,斯坦福大学的两位博士生「图解」AlphaFold 3 ,将模型架构可视化,同时不遗漏任何一个细节。
能抗衡AlphaFold 3的生命科学大模型终于出现了。初创公司Evolutionary Scale AI发布了他们最新的98B参数蛋白质语言模型ESM3。不仅支持序列、结构、功能的all-to-all推理,团队还在实验中发现,它设计的新蛋白质相当于模拟自然界5亿年的进化。
谷歌DeepMind开发的AlphaFold一夜之间颠覆了生物学,这一革命性的突破背后,有一支怎样的团队?AlphaFold的缔造者之一、DeepMind研究副总裁分享了成功的秘密——如何组建一个团队来应对这一巨大的跨学科挑战并取得胜利。
不久之前,Google DeepMind 发布了 AlphaFold3,再次引发了人们对「AI + 生命科学」的讨论。
AlphaFold3引起的浪潮下,一个新的抗体设计生成式AI大模型浮出水面。
AlphaFold3的横空出世再次震撼了整个学术界,然而谷歌DeepMind的「不开源」引起学界不满,AlphaFold服务器遭到黑客攻击,开源项目也开始发力。
把169861个生物物种数据装进大模型,大模型竟get到了生物中心法则的奥秘——
世界是变化的,分子是运动的,从预测静态单一结构走向动态构象分布是揭示蛋白质等生物分子功能的重要一步。探索蛋白质的构象分布,能帮助理解蛋白质与其他分子相互作用的生物过程;识别蛋白质表面下的潜在药物位点,描绘各个亚稳态之间的过渡路径,有助于研究人员设计出具有更强特异性和效力的目标抑制剂和治疗药物。但传统的分子动力学模拟方法昂贵且耗时,难以跨越长的时间尺度,从而观察到重要的生物过程。