
将多模态大模型稀疏化,3B模型MoE-LLaVA媲美LLaVA-1.5-7B
将多模态大模型稀疏化,3B模型MoE-LLaVA媲美LLaVA-1.5-7B对于大型视觉语言模型(LVLM)而言,扩展模型可以有效提高模型性能。然而,扩大参数规模会显著增加训练和推理成本,因为计算中每个 token 都会激活所有模型参数。
来自主题: AI技术研报
6448 点击 2024-01-31 16:23
对于大型视觉语言模型(LVLM)而言,扩展模型可以有效提高模型性能。然而,扩大参数规模会显著增加训练和推理成本,因为计算中每个 token 都会激活所有模型参数。
多模态大模型GPT-4V也会「有眼无珠」。UC San Diego纽约大学研究人员提出全新V*视觉搜索算法逆转LLM弱视觉宿命。
即使遮挡,也能渲染出高保真的 3D 人体。
GPT-4V的开源替代方案来了!极低成本,性能却类似,清华、浙大等中国顶尖学府,为我们提供了性能优异的GPT-4V开源平替。
最近,来自北京大学等机构研究者提出了一种全新视觉语言大模型——Video-LLaVA,使得LLM能够同时接收图片和视频为输入。Video-LlaVA在下游任务中取得了卓越的性能,并在图片、视频的13个基准上达到先进的性能。这个结果表明,统一LLM的输入能让LLM的视觉理解能力提升。
AI能理解搞笑视频笑点在哪里了。北大等团队开源视觉语言大模型Video-LLaVA,将图像和视频表示对齐到统一的视觉特征空间,在13个图片和视频基准上达到先进的性能。
GPT-4V风头正盛,LLaVA-1.5就来踢馆了!它不仅在11个基准测试上都实现了SOTA,而且13B模型的训练,只用8个A100就可以在1天内完成。