在NLP领域,研究者们已经充分认识并认可了表征学习的重要性,那么视觉领域的生成模型呢?最近,谢赛宁团队发表的一篇研究就拿出了非常有力的证据:Representation matters!
在NLP领域,研究者们已经充分认识并认可了表征学习的重要性,那么视觉领域的生成模型呢?最近,谢赛宁团队发表的一篇研究就拿出了非常有力的证据:Representation matters!
性能不输SOTA模型,计算开销却更低了——
视频生成模型大乱斗
随着近年来在文本和视频数据上构建基础模型的进展,学术界对时间序列的基础模型也表现出浓厚的兴趣。 时间序列分析在许多关键领域中具有重要性,能够影响从科学研究到经济决策的广泛应用。
在 ECCV 2024 中,来自南洋理工大学 S-Lab、上海 AI Lab 以及北京大学的研究者提出了一种原生 3D LDM 生成框架。
你规定路线,Tora 来生成相应轨迹的视频。
一转眼,2024 年已经过半。我们不难发现,AI 尤其是 AIGC 领域出现一个越来越明显的趋势:文生图赛道进入到了稳步推进、加速商业落地的阶段,但同时仅生成静态图像已经无法满足人们对生成式 AI 能力的期待,对动态视频的创作需求前所未有的高涨。
DiT 都能用,生成视频无质量损失,也不需要训练。
2024 年 5 月,DreamTech 官宣了其高质量 3D 生成大模型 Direct3D,并公开了相关学术论文 Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer。
基于 Diffusion Transformer(DiT)又迎来一大力作「Flag-DiT」,这次要将图像、视频、音频和 3D「一网打尽」。