
CMU&清华新作:让LLM自己合成数据来学习,特定任务性能同样大幅提升
CMU&清华新作:让LLM自己合成数据来学习,特定任务性能同样大幅提升为了解决这个问题,一些研究尝试通过强大的 Teacher Model 生成训练数据,来增强 Student Model 在特定任务上的性能。然而,这种方法在成本、可扩展性和法律合规性方面仍面临诸多挑战。在无法持续获得高质量人类监督信号的情况下,如何持续迭代模型的能力,成为了亟待解决的问题。
为了解决这个问题,一些研究尝试通过强大的 Teacher Model 生成训练数据,来增强 Student Model 在特定任务上的性能。然而,这种方法在成本、可扩展性和法律合规性方面仍面临诸多挑战。在无法持续获得高质量人类监督信号的情况下,如何持续迭代模型的能力,成为了亟待解决的问题。
今年 6 月底,谷歌开源了 9B、27B 版 Gemma 2 模型系列,并且自亮相以来,27B 版本迅速成为了大模型竞技场 LMSYS Chatbot Arena 中排名最高的开放模型之一,在真实对话任务中比其两倍规模以上的模型表现还要好。
谷歌DeepMind的小模型核弹来了,Gemma 2 2B直接击败了参数大几个数量级的GPT-3.5和Mixtral 8x7B!而同时发布的Gemma Scope,如显微镜一般打破LLM黑箱,让我们看清Gemma 2是如何决策的。
近年来,针对单个物体的 Text-to-3D 方法取得了一系列突破性进展,但是从文本生成可控的、高质量的复杂多物体 3D 场景仍然面临巨大挑战。之前的方法在生成场景的复杂度、几何质量、纹理一致性、多物体交互关系、可控性和编辑性等方面均存在较大缺陷。
面对LLM逐渐膨胀的参数规模,没有H100的开发者和研究人员们想出了很多弥补方法,「量化」技术就是其中的一种。这篇可视化指南用各种图解,将「量化」的基本概念和分支方法进行了全方位总结。
Meta、UC伯克利、NYU共同提出元奖励语言模型,给「超级对齐」指条明路:让AI自己当裁判,自我改进对齐,效果秒杀自我奖励模型。
音视频大语言模型在处理视频内容时,往往未能充分发挥语音的作用。video-SALMONN模型通过三部分创新:音视频编码和时间对齐、多分辨率因果Q-Former、多样性损失函数和混合未配对音视频数据训练。该模型不仅在单一模态任务上表现优异,更在视听联合任务中展现了卓越的性能,证明了其全面性和准确性。
自回归训练方式已经成为了大语言模型(LLMs)训练的标准模式, 今天介绍一篇来自阿联酋世界第一所人工智能大学MBZUAI的VILA实验室和CMU计算机系合作的论文,题为《FBI-LLM: Scaling Up Fully Binarized LLMs from Scratch via Autoregressive Distillation》
在QuantaMagazine的这篇播客中,主持人采访了华盛顿大学计算机教授Yejin Choi。两人谈到十分有趣的话题,比如AI是否必须获得具身和情感,才能发展出像人类一样的常识?
LLM 很强,而为了实现 LLM 的可持续扩展,有必要找到并实现能提升其效率的方法,混合专家(MoE)就是这类方法的一大重要成员。