挑战Transformer,华为诺亚新架构盘古π来了,已有1B、7B模型
挑战Transformer,华为诺亚新架构盘古π来了,已有1B、7B模型近日,来自华为诺亚方舟实验室、北京大学等机构的研究者提出了盘古 π 的网络架构,尝试来构建更高效的大模型架构。
近日,来自华为诺亚方舟实验室、北京大学等机构的研究者提出了盘古 π 的网络架构,尝试来构建更高效的大模型架构。
大规模语言模型(LLMs)在很多关键任务中展现出显著的能力,比如自然语言理解、语言生成和复杂推理,并对社会产生深远的影响。然而,这些卓越的能力伴随着对庞大训练资源的需求(如下图左)和较长推理时延(如下图右)。因此,研究者们需要开发出有效的技术手段去解决其效率问题。
ChatGPT 凭一己之力掀起了 AI 领域的热潮,火爆全球,似乎开启了第四次工业革命。
我们是否还有另一个选择,可以让人类完美通关历史?来自密歇根和罗格斯大学的学者利用LLM对历史上的战争进行模拟推演结果,会是我们的参考答案吗?
目前大多数模型的能力还是局限于生成对整体图像或特定区域的文本描述,在像素级理解方面的能力(例如物体分割)相对有限。
在 2023 年即将结束之际,我们会发现随着 ChatGPT 的引入,世界发生了不可逆转的变化。人工智能的主流化继续以强劲势头推进,我们如何应对这些不断变化的时代需要信念的飞跃。
2023 年是 AI 发展的关键一年,ChatGPT 以及 GPT-4 的发布引发了全社会对于大模型以及生成式 AI 的关注。
使用LLM来制造芯片, 过去一年多以来,ChatGPT引发的AI浪潮席卷全球。
面对当前微调大模型主要依赖人类生成数据的普遍做法,谷歌 DeepMind 探索出了一种减少这种依赖的更高效方法。
MIT、微软联合研究:不需要额外训练,也能增强大语言模型的任务性能并降低其大小。